THE EXPERIMENTAL AND NUMERICAL STUDY OF THE FORCES DURING THE INCREMENTAL FORMING OF TITANIUM SHEETS
Аннотация
Incremental forming is a rapid prototyping process that allows sheets to be formed without using forming tools, using a numerically controlled machine tool. A wide variety of shapes can be generated with this process.The objective of this work is to study through experimental tests and numerical simulations the behavior of ASTM grade 2 titanium during incremental point forming (SPIF). A Spinner MFG850 machining center from ISET in JENDOUBA coupled to a multi-component force sensor FN7325 was used for the forming of thin sheets by this process. As the diameter of the punch and its incremental movement are parameters having a direct effect on the forming force, tests with diameters of the punches dp varying between 10 and 15 mm and various paths made up of circular movements in the horizontal plane have been carried out experimentally. Numerical simulation is carried out in large elastoplastic deformations with ABAQUS/explicit. Comparisons of the evolution of the forming force for different values of the diameter of the punch dp and of the displacement step ∆zare carried out.