ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РЕМОНТА РЕДУКТОРОВ ЗАДНИХ МОСТОВ ГРУЗОВЫХ АВТОМОБИЛЕЙ ЗА СЧЕТ СНИЖЕНИЯ ТРУДОЕМКОСТИ ИХ СБОРКИ И РАЗБОРКИ

Оксана Владимировна Бессонова

студент

Bessonova86@mail.ru

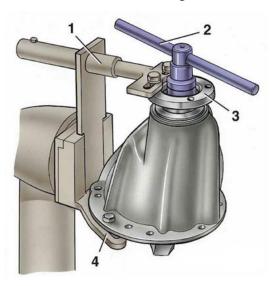
Алексей Александрович Бахарев

кандидат технических наук, доцент

BakharevAlex@mail.ru

Мичуринский государственный аграрный университет

г. Мичуринск, Россия


Аннотация. В статье рассмотрен анализ устройств, применяемых для ремонта редукторов задних мостов грузовых автомобилей. Выявлены основные достоинства и недостатки рассмотренных устройств, а также разработана новая конструкция стенда для ремонта редукторов задних мостов грузовых автомобилей.

Ключевые слова: ремонт, стенд, редуктор, задний мост, грузовой автомобиль.

Редуктор заднего моста — один из важных узлов автомобиля, который участвует в его передвижении. Редуктор состоит из главной передачи и дифференциала.

Для разборки редуктора заднего моста автомобиля «Газель» имеется специализированный стенд, благодаря которому снижается трудоемкость работ и улучшаются условия труда слесаря-ремонтника. Для проведения разборочно-сборочных работ закрепите редуктор на стенде (рисунок 1). Снимите стопорные пластины, выверните болты и снимите крышки подшипников коробки дифференциала, регулировочные гайки, и наружные кольца роликовых подшипников. Крышки перед снятием пометьте, чтобы при сборке установить на прежние места [1, 2].

Недостатками конструкции данного стенда является малая номенклатура обслуживаемых на данном стенде редукторов, ненадежное крепление редуктора к фланцу, отсутствие поддона для сбора стекающего масла.

1- стопор для фиксирования фланца ведущей шестерни; 2 - торцевой ключ; 3 - фланец ведущей шестерни; 4 - кронштейн для крепления редуктора на стенде.

 $Pucyнок\ 1$ - Схема отворачивания самоконтрящейся гайки ведущей шестерни редуктора заднего моста автомобиля «Газель» на стенде

Для разборки-сборки редукторов задних мостов автомобилей ЗИЛ и КамАЗ имеется стенд модели Р-640, представленный на рисунке 2. Стенд состоит из основания, которое посредством фундаментных болтов крепится к бетонному полу. На корпусе смонтирован механизм крепления, который представляет из себя консольно-расположенную станину, и поворота, состоящий из электродвигателя, червячного редуктора и клиноременной передачи [3].

Рисунок 2 - Стенд Р-640 для разборки-сборки редукторов задних мостов автомобилей ЗИЛ и КамАЗ

Технические характеристики стенда представлены в таблице 1.

Таблица 1 Технические характеристики стенда P-640

Тип	стационарный, электромеханический
Габаритные размеры, мм	850x650x1000
Масса, кг	115

Недостатками конструкции данного стенда отсутствие поддона для сбора стекающего масла.

Стенд модели M-407 для разборки-сборки редукторов задних мостов автомобилей MA3 и KPA3 представлен на рисунке 3.

Стенд предназначен для фиксации редуктора автомобилей МАЗ и КРАЗ для дальнейшей его разборки. Стенд представляет сваренную из уголковой стали раму. Редуктор устанавливается фланцем на ложементы, корпусом на кронштейн рамы [4].

Рисунок 3 - Стенд модели М-407 для разборки-сборки редукторов задних мостов автомобилей МАЗ и КРАЗ

Технические характеристики стенда представлены в таблице 2.

Тип	стационарный
Габаритные размеры, мм	536x500x848
Масса, кг	47,5

Недостатками конструкции данного стенда является малая номенклатура обслуживаемых на данном стенде редукторов, ненадежное крепление и фиксация редуктора при его разборке, отсутствие поддона для сбора стекающего масла.

Стенд модели Б252AM для разборки и сборки редукторов задних мостов автомобилей (рисунок 4) предназначен для использования на участках ремонта агрегатов автомобилей и других транспортных машин в условиях стационарных и передвижных мастерских по ремонту техники [5].

Стенд представляет собой сварную конструкцию, выполненную из профильной трубы квадратного сечения. На раме смонтирован поворотный стол, установленный в подшипниковые опоры. Устанавливаемый редуктор фиксируется на столе посредством винтового зажима. Для установки на стенд редукторов различных типов данный стенд комплектуется сменными кольцами. Вращение поворотного стола осуществляется вручную.

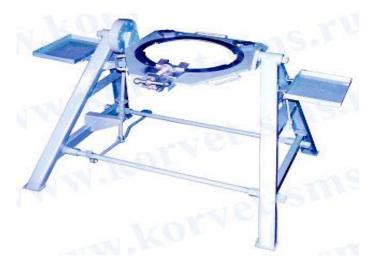


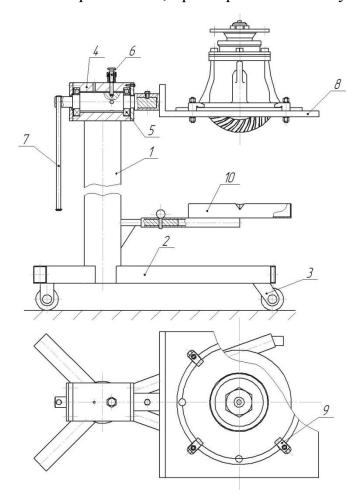
Рисунок 4 Общий вид стенда модели Б252АМ

Технические характеристики стенда представлены в таблице 3.

 Таблица 3

 Технические характеристики стенда модели Б252AM

Тип	переносной, универсальный
Максимальная масса редукторов, кг	260+5%
Количество фиксируемых положений стола	восемь, через 45 градусов
Привод поворота стола	ручной
Габаритные размеры, мм	903x1255x910
Масса, кг	60+2%


Данный стенд также имеет недостатки, которые заключаются в его высокой рыночной стоимости, а также из-за двухопорной компоновки поворотного стола работа на стенде становится неудобной.

На основании проведенного анализа стендов разборки-сборки редукторов задних мостов грузовых автомобилей, следует сделать вывод, что разрабатываемая конструкция стенда должна быть в первую очередь универсальной и быть пригодной для размещения на нем редукторов автомобилей тех марок, которые имеются на предприятии.

Также данный стенд должен быть простым в изготовлении, надежным и удобным в эксплуатации.

На основании обзора существующих стендов и оборудования для ремонта редукторов предлагается конструкция стенда, который позволит сократить

время простоя ремонтируемой техники. Стенд состоит из стойки 1 (рисунок 5), изготовленной из трубы диаметром 120 мм, к которой приварены четыре ножки 2 с установленными на них опорными колесами 3. Вверху стойки приварен корпус 4 подшипников качения 5, которые служат для вращения вала, передающего на подшипники качения радиальные нагрузки. Для смазывания подшипников в корпусе выполнено специальное отверстие. Фиксация вала в четырех положениях осуществляется посредством стопорного штока фиксатора 6, который вставляется в отверстия вала, просверленные на глубину 15 мм.

Рисунок 5 - Стенд для разборки - сборки редукторов задних мостов грузовых автомобилей

Вращение вала осуществляется посредством поворота рукоятки 7. На свободном конце вала выполнена лыска, посредством которой плита 8 поворачивается вместе с валом. Таким образом, поворачивая рукоятку 7, поворачивается плита 8 вместе с ремонтируемым редуктором, который

прижимается к плите прижимами 9. В нижней части основания стенда устанавливают поддон 10 для сбора масла, стекающего с редуктора.

Перед началом работы, необходимо проверить исправность приспособления, при необходимости повернуть плиту с помощью рукоятки в горизонтальное положение. Затем с помощью консольного поворотного крана устанавливают ремонтируемый редуктор, крепят редуктор на плите с помощью фиксирующих прижимов. Во время ремонта плиту с редуктором можно поворачивать на 360° для извлечения и замены деталей. После окончания выполняемых работ плиту поворачивают в горизонтальное положение, редуктор демонтируют со стенда, а собранное в поддоне масло выливают в резервуар для хранения отработанных масел.

Список литературы:

- 1. Черноухов С.В., Бахарев А.А. Анализ применяемых способов и средств для технического обслуживания машин // Наука и Образование. 2022. Т. 5. № 2
- Черноухов С.В., Бахарев А.А. Результаты исследования работы агрегата для технического обслуживания машин // Наука и Образование. 2022.
 Т. 5. № 2
- 3. Алехин Р.В., Бахарев А.А. Пути повышения эффективности ремонтов автомобильного транспорта // Наука и Образование. 2022. Т. 5. № 3
- 4. Земляной А.А., Ланцев В.Ю. Исследование существующей системы то и р специальных машин // Наука и Образование. 2021. Т. 4. № 2
- 5. Ланцев В.Ю., Земляной А.А. Разработка и обоснование методов и режимов то и р специальных машин // Наука и Образование. 2021. Т. 4. № 2
- 6. Эйдзен Н.А., Абросимов А.Г. Логистический анализ потребности в запасных частях // Наука и Образование. 2021. Т. 4. № 2
- 7. Кольтюков К.С., Алехин А.В. Механизация технического обслуживания и ремонта ходовой части транспортно-технологических машин // Наука и Образование. 2021. Т. 4. № 3

INCREASING THE EFFICIENCY OF REPAIRING REAR AXLE
GEARS OF CARGO VEHICLES BY DECREASING THE LABOR
INDUSTRY OF THEIR ASSEMBLY AND DISASSEMBLY

Oksana V. Bessonova

student

Bessonova86@mail.ru

Alexey A. Bakharev

candidate of technical sciences, associate professor

BakharevAlex@mail.ru

Michurinsk State Agrarian University

Michurinsk, Russia

Annotation. The article considers the analysis of devices used for the repair of rear axle gearboxes of trucks. The main advantages and disadvantages of the considered devices are revealed, and a new design of the stand for the repair of rear axle gearboxes of trucks is developed.

Key words: repair, stand, gearbox, rear axle, truck.

Статья поступила в редакцию 05.09.2023; одобрена после рецензирования 16.10.2023; принята к публикации 27.10.2023.

The article was submitted 05.09.2023; approved after reviewing 16.10.2023; accepted for publication 27.10.2023.