ОСОБЕННОСТИ ПРИСПОСОБЛЕНИЙ ДЛЯ ЗАКРЕПЛЕНИЯ ДЕТАЛЕЙ ПРИ РЕМОНТЕ МАШИН

Мишин Михаил Михайлович

кандидат технических наук, доцент

Ненахов Александр Алексеевич

Студент

e-mail: aleksandrnenahov@gmail.com

Мичуринский государственный аграрный университет, г. Мичуринск, Россия

Аннотация: В статье рассматриваются основные преимущества и недостатки струбцин, применяемых при ремонте и сервисе машин.

Ключевые слова: струбцина, закрепление деталей, особенности устройства.

В процессе работы с различными деталями и заготовками часто их необходимо удерживать в определенном положении. Однако руки рабочего быть свободны выполнения каких-либо операций. должны ДЛЯ При невозможности выручку приходят использовать помощника, на такие приспособления, как зажимы.

Незаменимым инструментом будут специальные зажимные приспособления – струбцины. [1]

Устройство и принцип действия

Обыкновенный ручной зажим представляет собой изогнутую буквой "П" монолитную раму, к которой, с одной стороны, прикреплены подвижные зажимные элементы. Как правило, это длинный винт, оборудованный с одной стороны рукоятью для удобства поворота вокруг оси, а с другой стороны

имеющий плоский широкий пятак. За счет поворота винта этот пятак создает давление на противоположный конец рамы. Если между пятаком и рамой поместить два, скажем, деревянных бруска, а затем затянуть винт, они надежно зафиксируются между собой. [2]

В зависимости от конструкции, прижимные вспомогательные инструменты можно разделить на:

Корпусные струбцины. Зажимное усилие используется для фиксации деталей на косых и параллельных плоскостях, за счет элементов корпуса.

Рисунок 1 – Корпусная струбцина

Струбцина винтовая. Выполняется в нескольких вариантах, где основное зажимное усилие обеспечивает винт с ручкой и пятаком.

Рисунок 2 - Струбцина винтовая

Другой вариант – корпус в форме буквы «G» или «П», сквозь одну из «ножек» которой пропущен зажимной винт с пятаком.

Рисунок 3 - Струбцина винтовая форме буквы «G»

Широко распространены кованые струбцины, изготовленные из инструментальной стали. Металл, после термообработки, обладает высокой прочность, следствием чего является высокая надежность инструмента.

Магнитная струбцина. Служит для предварительной фиксации между собой заготовок (трубки, профильные уголки и т.д.), чаще всего для сварки.

Рисунок 4 - Магнитная струбцина

Выполняется в виде равнобедренного прямоугольного треугольника, пятиили шестигранника. Боковины струбцины имеют магнитные вставки, которые и удерживают металлические элементы между собой.

Струбцина с трещоткой. Зажимается усилием руки, а установленный храповой механизм блокирует губки. Для ослабления зажима служит специальный рычажок.

Рисунок 5 – Струбцина с трещоткой

Струбцина триггерная. Называют быстрозажимной. Имеет F - образную конструкцию.

Рисунок 6 – Струбцина триггерная

Одна губка неподвижно закреплена на металлическом стержне. Вторая имеет рукоять, похожую на пистолетную, с рычагом и специальным флажком – защелкой.

Гидравлическая струбцина. Является разновидностью G - образной струбцины, где вместо винта используется гидроцилиндр, на штоке которого установлен упорный пятак.

Рисунок 7 – Гидравлическая струбцина

Вакуумные струбцины. На раме параллельно друг другу установлены присоски со встроенными ручными вакуумными насосами. Используются для позиционирования листовых деталей в одной плоскости.

Рисунок 8 – Вакуумные струбцины

Торцевые. Является вариацией G-образной модели, но имеет два винта. Используется для зажима заготовок с трех сторон. Удобна для отделки торцевых деревянных поверхностей, поэтому востребованы столярами.

Рисунок 9 - Торцевая струбцина [3]

T-образные. Особенностью зажима является направляющий профиль в форме буквы «Т», который может иметь длину более одного метра. На нем закреплены подвижные губки.

Рисунок 10 – Т-образный зажим

F-образные. Конструкция F-образной струбцины обладает меньшей жесткостью по сравнению с G-образной. Тем не менее, из-за широкого диапазона регулировок получила широкое распространение.

Рисунок 11 – F-образная струбцина

Угловые. Могут быть как винтовыми, так и магнитными. Первый вариант используется при соединении досок или деревянных брусков под прямым углом.

Рисунок 12 – Угловой зажим

Мощный литой корпус обеспечивает соблюдение угла в 90 градусов. Прижим, как правило, осуществляется одним винтом. Сквозные отверстия на корпусе позволяют крепить этот инструмент к столу или верстаку.

Пенточные. Такой вид инструмента используется столярами и бондарями. Узкая специализация ленточного зажима обусловлена его особой конструкцией - механизм натяжения и жесткая лента.

Рисунок 13 – Ленточный зажим

Обеспечивает равномерную нагрузку по всей поверхности притягиваемых заготовок.

Трубные. В основе такой струбцины лежит трубка с подвижной губой. Вторая губа свободно перемещается вдоль трубы и фиксируется специальным стопором, а поджим заготовок осуществляется винтом с ручкой.

Рисунок 14 – Трубный зажим

Размеры конструкции позволяют надежно фиксировать заготовки с большим усилием.

Вывод. Проведенный анализ показал, что существующие на сегодняшний день конструкции зажимов, при правильном выборе, позволяют выполнять различные работы удобно и безопасно.

Список литературы

- 1. «ПЛОТНИКОВ Сайт о деревообработке и столярных работах,» [В Интернете]. Available: https://plotnikov-pub.ru/strubtsiny-dlya-dereva. [Дата обращения: 13 Октябрь 2019].
- 2. «Виды струбцин и их особенности,» 13 Октября 2019. [В Интернете]. Available: https://instrumentn.ru/stolyarno-slesarnyj-razdel/vidy-strubtsin-i-ihosobennosti.
- 3. «Руководство по выбору струбцин и зажимов,» [В Интернете]. Available: https://woodschool.ru/vybor-strubcin.html. [Дата обращения: 13 Октября 2019].
- 4. Современные проблемы науки и производства в агроинженерии (учебник) / Л.В. Бобрович, А.С. Гордеев, В.И. Горшенин, С.А. Жидков, А.И. Завражнов, А.А. Завражнов, Р.И. Ли, Н.Е. Макова, К.А. Манаенков, В.В. Миронов, Н.В. Михеев, И.Г. Смирнов, В.Ф. Федоренко // Международный журнал прикладных и фундаментальных исследований. 2013. № 11-1. С. 100-101.
- 5. Technologies and means of mechanization for sowing sugar beet belt under the Central chernozem Russia / V. Gorshenin, S. Soloviev, A. Abrosimov, I. Drobyshev, O. Ashurkova. 2015. T. VII. C. 804.
- 6. Усовершенствованная технология возделывания и уборки сахарной свеклы в условиях тамбовской области / П.Н. Кузнецов, В.И. Горшенин, С.В. Соловьёв, А.Г. Абросимов // Вестник Мичуринского государственного аграрного университета. 2014. № 6. С. 53-56.

- 7. Транспортное обеспечение коммерческой деятельности / В.И. Горшенин, Н.В. Михеев, И.А. Дробышев // Учебное пособие: учебное пособие для студентов высших учебных заведений, обучающихся по специальности 315100 (080401) «Товароведение и экспертиза товаров». М-во сельского хоз-ва РФ, Федеральное гос. образовательное учреждение высш. проф. образования «Мичуринский гос. аграрный ун-т». Мичуринск, Тамбовская обл., 2009. —
- 8. Горшенин В.И. Основные направления повышения эффективности системы обеспечения региона продовольствием / В.И. Горшенин // Нива Поволжья. 2012. № 3 (24). С. 64-68.
- 9. Машина для обработки межствольных полос в саду / А.Н. Манаенков, В.И. Горшенин, С.Д. Алехин, А.Д. Засыпкин, К.А. Манаенков // Патент на изобретение RUS 2081531 01.03.1993
- 10. Курочкин А.А. Оборудование и автоматизация перерабатывающих производств / А.А. Курочкин, Г.В. Шабурова, А.С. Гордеев, А.И. Завражнов // Учебник для ВУЗов. Сер. Учебники и учебные пособия для студентов вузов. Москва, 2007.
- 11. Остриков В.В., Корнев А.Ю., Манаенков К.А. Использование масел в двигателях зарубежной техники // Сельский механизатор. 2012. № 5. С. 32-33.
- 12. Гордеев А.С. Основы проектирования и строительства перерабатывающих предприятий / А.С. Гордеев, А.А. Курочкин, В.Д. Хмыров, Г.В. Шабурова // Учебник. Сер. Учебники и учебные пособия для высших учебных заведений. Москва, 2002.

FEATURES OF DEVICES FOR FASTENING OF DETAILS AT REPAIR OF CARS

Mishin Mikhail Mikhailovich

Candidate of technical sciences, docent

Nenakhov Alexander Alekseevich

Student

e-mail: aleksandrnenahov@gmail.com

Michurinsk State Agrarian University, Michurinsk, Russia

Abstract: The article discusses the main advantages and disadvantages of clamps used in the repair and service of machines.

Key words: clamp, anchoring details, features of the device.