ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РЕМОНТА ГРУЗОВЫХ АВТОМОБИЛЕЙ ЗА СЧЕТ РАЗРАБОТКИ СТЕНДА ДЛЯ ЗАМЕНЫ И РАЗБОРКИ ЗАДНИХ МОСТОВ

Андрей Вячеславович Корабельников

студент

Titanic1989@mail.ru

Алексей Александрович Бахарев

кандидат технических наук, доцент

BakharevAlex@mail.ru

Мичуринский государственный аграрный университет

г. Мичуринск, Россия

Аннотация. В статье рассмотрен анализ устройств применяемых для ремонта задних мостов грузовых автомобилей. Выявлены основные достоинства и недостатки рассмотренных устройств, а также разработана новая конструкция стенда для замены и разборки задних мостов лишенная недостатков существующих.

Ключевые слова: ремонт, стенд, задний мост, грузовой автомобиль.

Трудоёмкость одного текущего ремонта колеблется от нескольких минут до пятидесяти и более часов. Кроме того, при определении неисправности трактора или автомобиля зачастую сложно бывает оценить действительное содержание и трудоёмкость ремонтных работ. Следовательно, содержание и трудоёмкость работ во многих случаях выявляет рабочий на участке текущего ремонта. Потребность в текущем ремонте и содержание работ носит случайный характер (эксплуатационный ремонт), поэтому затраты труда на текущий ремонт планируют не на единицу ремонта, на 1000 км пробега для автомобиля и наработку моточасов для трактора [1, 2].

Проведением текущего ремонта автотранспорта сельскохозяйственных предприятий кроме специализированных авторемонтных предприятий могут заниматься водители, операторы тракторов, машинисты и рабочие ремонтных мастерских при помощи спец. оборудования. Стоит отметить, что не менее двадцати пяти процентов ТР требует затрат труда не превышающие один час, а еще около пятнадцати процентов имеют трудозатраты менее двух часов. Исходя из этого ремонт сельскохозяйственной техники имеющий такую малую трудоемкость оптимально проводить одному работнику, а двух работников задействовать только когда в программе ремонта есть операции невыполнимые одним человеком. Такими операциями, к примеру, являются перемещение коробок перемены передач, редукторов задних мостов, задних мостов в целом и рессор устанавливаемых как на грузовые автомобили так и на трактора при их капитальном ремонте. Из вышесказанного можно сделать вывод, что для проведения эффективных ремонтов обязательно нужно иметь оборудование облегчающие установку и снятие подобных механизмов [3].

Для того что бы качественно провести ремонт заднего моста нужно использовать несколько стендов для удобства сборки и разборки этого механизма. Такое утверждение следует из того что задние мосты различной техники отличаются габаритными размерами и следовательно почти под каждый место нужен свой стенд, а также то что в процессе разборки

применяется много различных технологических операций которые производятся в разных местах участка или мастерской.

Стенд для технического обслуживания ремонта редукторов P-580 необходим для более эффективной сборки и разборки редукторов задних мостов различных автомобилей и тракторов [4].

Таблица 1 Характеристики стенда Р-620

Наименование	Значение
Тип	стационарный
Вид привода	ручной
Размеры габаритные (ДхШхВ), мм	850x650x1000
Вес, кг	80

Состав не передвигаемой модификации имеет большие габариты и вес изза того что ремонтирует задние мосты техники больших размеров. Пуск устройства происходит вручную.

 $Pucyнок\ 1$ - Стенд-кантователь для разборки и сборки редуктора главной передачи (заднего моста) P-260

Стенд SRBB предназначен для облегчения работ по сервисному обслуживанию и ремонту редуктора главной передачи (заднего моста) грузовых автомобилей БелАЗ различных модификаций. [5]

Механизмы данного стенда дают возможность крутить закрепленный редуктор вокруг своей оси на триста шестьдесят градусов, что снижает

трудоемкость по ремонту механизмов. Присутствующий в конструкции механизм стопорения дает возможность безопасно останавливать поворотную платформу в любом положении.

Стенд крепится к полу при помощи анкеров под которые в основании стенда предусмотрены отверстия.

Рисунок 2 - Стенд SRBB

Таблица 2

Параметры	Модель		
	SRBB-30R	SRBB-55R	SRBB-55E
Исполнение	Стационарный	Стационарный	Стационарный
Привод вращения	Ручной	Ручной	Электрический
Потребляемая мощность, кВт	-	-	0,75
Напряжение, В	-	-	380
Габаритные размеры (L x B x H),	1230 x 1550 x	1230 x 1550 x	1230 x 1550 x 1320
MM	1170	1170	
Масса, кг	305	305	315

Технические характеристики

Устройство Р700А и Р710Б необходим для ремонта разнообразных двигателей внутреннего сгорания, рядных двигателей внутреннего сгорания, коробок перемены передач, задних мостов автомобилей и тракторов различного производства ограничены лишь весом не больше трех тысяч килограмм.

Рисунок 3 - Стенд Р770Е

Стенд является универсальным и спокойно помогает ремонтировать различные вышеописанные механизмы используя для этого специальные адаптеры. Поворот ремонтируемых механизмов обеспечивается при помощи червячной пары.

 Таблица 3

 Технические характеристики

Характеристика	P770E	P776E
Тип	Электромеханический	Ручной
Грузоподъемность, кг	3000	3000
Напряжение, В	380	-
Установленная мощность, кВт	0,75	-
Частота вращения шпинделя	2,5	-
(траверсы), мин ^{-1,} не более		
Длина/ширина/высота, мм	2200/1080/1425	2282/1080/1425
Способ поворота	360	360
Угол поворота, град.	электродвигателем через	вручную через
	червячный редуктор	червячный редуктор
Масса, кг, не более	460	400

Рисунок 4 - Стенд Р776Е

Стенд-кантователь для разборки и сборки дифференциала главной передачи SDMT предназначен для облегчения работ по сервисному обслуживанию и ремонту дифференциала главной передачи. [6, 7]

 $\mathit{Pucyho\kappa}\ 5$ - Стенд-кантователь для разборки и сборки дифференциала главной передачи SDMT

Таблица 4

Технические характеристики

Параметры	Модель		
	SDMT-55R	SDMT-55E	
Исполнение	Стационарный	Стационарный	
Привод вращения	Ручной	Электрический	
Потребляемая мощность, кВт	-	0,75	
Напряжение, В	-	380	
Габаритные размеры (L x B x H),	1320 x 1030 x 1548	1320 x 1030 x 1548	
MM			
Масса, кг	266	277	

В основании стенда имеются отверстия под крепление анкерами для стационарной установки в требуемом месте.

Стенд для замены и разборки заднего моста грузовых автомобилей содержит раму 7 (рисунок 6), по которой по направляющим перемещается съемный механизм. Съемный механизм состоит из передвижного основания 6, силового цилиндра 4 и упорного захвата 2 предназначенного для закрепления в устройстве агрегатов автомобиля. Для передвижения по ремонтной зоне к раме прикреплены колеса. Подъемный механизм состоит из силового гидроцилиндра 4, установленного с возможностью поступательного перемещения относительно штока, опирающегося на опорную плиту. Гидроцилиндр связан с ручным гидронасосом 5 через шланги и штуцер.

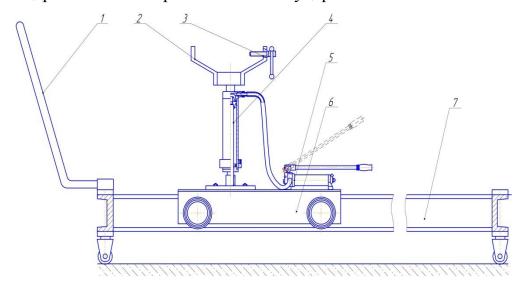


Рисунок 6 - Стенд для замены и разборки заднего моста грузовых автомобилей

Устройство работает следующим образом.

Для того чтобы вывесить транспортное средство нужно произвести ряд операций: подкатить разработанное устройство под транспортное средство и используя силовой цилиндр поднимают необходимую ось транспортного средства на ту высоту которая запланирована.

Для замены агрегатов автомобиля необходимо: подвести устройство под снимаемый узел; затормозить колеса; поднять гидроцилиндр до упора заменяемым агрегатом; закрепить упорный захват снимаемым агрегатом; отсоединить агрегат от автомобиля с мест крепления; опустить цилиндр;

перетащить устройство со снятым агрегатом на место ремонта или регулировки.

Применение этого устройства позволит выполнить достаточно трудоёмкие операции одному рабочему, повысить производительность его труда, культуру производства, в чем особенно нуждается ремонтное производство предприятий.

Список литературы:

- 1. Черноухов С.В., Бахарев А.А. Анализ применяемых способов и средств для технического обслуживания машин // Наука и Образование. 2022. Т. 5. № 2
- Черноухов С.В., Бахарев А.А. Результаты исследования работы агрегата для технического обслуживания машин // Наука и Образование. 2022.
 Т. 5. № 2
- 3. Алехин Р.В., Бахарев А.А. Пути повышения эффективности ремонтов автомобильного транспорта // Наука и Образование. 2022. Т. 5. № 3
- 4. Земляной А.А., Ланцев В.Ю. Исследование существующей системы то и р специальных машин // Наука и Образование. 2021. Т. 4. № 2
- Ланцев В.Ю., Земляной А.А. Разработка и обоснование методов и режимов то и р специальных машин // Наука и Образование. 2021. Т. 4. № 2
- 6. Эйдзен Н.А., Абросимов А.Г. Логистический анализ потребности в запасных частях // Наука и Образование. 2021. Т. 4. № 2
- 7. Кольтюков К.С., Алехин А.В. Механизация технического обслуживания и ремонта ходовой части транспортно-технологических машин // Наука и Образование. 2021. Т. 4. № 3

INCREASING THE EFFICIENCY OF REPAIR OF CARGO
VEHICLES THROUGH THE DEVELOPMENT OF A STAND FOR THE
REPLACEMENT AND DISASSEMBLY OF REAR AXLES

Andrey V. Korabelnikov

student

Titanic1989@mail.ru

Alexev A. Bakharev

candidate of technical sciences, associate professor

BakharevAlex@mail.ru

Michurinsk State Agrarian University

Michurinsk, Russia

Annotation. The article considers the analysis of devices used to repair the rear axles of trucks. The main advantages and disadvantages of the considered devices are revealed, and a new design of the stand for the replacement and disassembly of the rear axles is developed, devoid of the shortcomings of the existing ones.

Key words: repair, stand, rear axle, truck.

Статья поступила в редакцию 05.09.2023; одобрена после рецензирования 16.10.2023; принята к публикации 27.10.2023.

The article was submitted 05.09.2023; approved after reviewing 16.10.2023; accepted for publication 27.10.2023.