РЕЗУЛЬТАТЫ ИСПЫТАНИЙ КОМБИНИРОВАННОГО ОПТИЧЕСКОГО ПРИБОРА ДЛЯ ОЦЕНКИ ФОТОСИНТЕТИЧЕСКОЙ АКТИВНОСТИ И ОТНОСИТЕЛЬНОГО СОДЕРЖАНИЯ ХЛОРОФИЛЛАЗА ОДИН ИЗМЕРИТЕЛЬНЫЙ ЦИКЛ

Ольга Николаевна Будаговская

доктор технических наук, в.н.с. budagovsky@mail.ru Федеральный Научный Центр имени И.В.Мичурина Мичуринский государственный аграрный университет г. Мичуринск, Россия

Аннотация. Приведены данные испытаний оптического прибора для комплексной оценки функционального состояния растений по критериям фотосинтетической активности и относительного содержания хлорофилла за один измерительный цикл.

Ключевые слова: фотосинтетическая активность, относительное содержание хлорофилла, листья, комбинированный прибор, макетный образец, испытания.

В работе [1] приведено описание конструкции макетного образца комбинированного прибора, совмещающего функции оценки фотосинтетической активности и относительного содержания хлорофилла. Целью данной работы является испытания работоспособности прибора.

Первый этап испытаний - сравнение показаний прибора с данными по концентрации хлорофилла, полученные стандартным биохимическим способом. Для реализации этого блока испытаний были использованы листья смородины черной сорта «Белорусская Сладкая», визуально отличающиеся по цвету: темно-зеленые, светло- зеленые и желтеющие. После часовой темновой и температурной адаптации были проведены измерения интенсивности светопропускания на комбинированной приборе. Затем через 12 часов после хранения в холодильнике при температуре +2°C из них стандартным биохимическим методом были получены ацетоновые вытяжки хлорофилла и проведено спектрометрирование оптической плотности на 3 длинах волн с использованием спектрофотометра Genesis 10uv Thermo (США). Весь блок биохимических анализов проводился ПОД руководством И при непосредственном участии д.с.х.н. Жбановой Е. В. с использованием указаний методического руководства Казанского университета [2]. Из центральной части листа выбирали кусочки без крупных жилок, формировали навеску 100 мг. Затем растирали ее в фарфоровой ступке в 100% ацетоне и процеживали через стеклянный фильтр с откачкой. Далее доводили объем полученной вытяжки до 10 мл, разливали в кварцевые кюветы и проводили измерение оптической плотности на трех длинах волн: 662 нм, 644 нм и 440 нм (рис.1). Для расчета содержания хлорофиллов и каротиноидов использовали уравнение Хольма-Веттштейна [1]:

$$C \text{ xл.} a = 9,784 \text{ D}_{662} - 0,990 \text{ D}_{644}$$
 $C \text{ xл.} b = 21,426 \text{ D}_{644} - 4,650 \text{ D}_{662}$ (1)
 $C \text{ xл.} a + b = 5,134 \text{ D}_{662} + 20,436 \text{ D}_{644}$
 $C \text{ кар} = 4,695 \text{ D}_{440.5} - 0,268 \text{ C xл.} a + b$

Рисунок I – Ацетоновые вытяжки и фотометр для измерения их оптических плотностей

Следует отметить высокий коэффициент корреляции между концентрацией хлорофилла и оптическими параметрами целой листовой пластинки (более 0,997) но о ней с уверенностью можно говорить только в рамках полученных концентраций (в случае суммы хлорофиллов речь идет о диапазоне концентрации от 0,15 % до 0,32 % сырой массы листа (табл.1)). Актуально знать, сохраниться ли данная закономерность, если содержание пигментов будет иным? Для этого удобнее использовать не живые листья, а стандартный раствор Гетри, имитирующий оптические свойства хлорофилла. Его удобно разбавлять в кратных пропорциях и строить на этой основе калибровочные графики в широком диапазоне концентраций.

 Таблица 1

 Оптические и биохимические параметры листьев смородины

Тип	I,	К проп, %	С хл.а,	С хл. <i>b</i>	C	С карат.
листьев	усл.ед.		% с.м.	% с.м	xл. a + b	% с.м
					% с.м.	
Желтый	130,2±1,2	31,21±0,3	0,0642	0,084	0,148	0,02
Светло- зеленый	82,5±0,58	19,77±0,14	0,1534	0,096	0,248	0,052
Зеленый	62,6±0,95	15,02±0,23	0,2158	0,106	0,322	0,076

Второй этап испытаний — градуировка прибора с использованием стандартного раствора Гетри. Стандартный раствор Гетри по оптической плотности в диапазоне длин волн от 610 нм до 700 нм соответствует раствору водорастворимых производных хлорофилла с концентрацией 85 мг/дм³. Посредством разбавления можно получит любую необходимую концентрацию и провести градуировку прибора в широком диапазоне содержания хлорофилла. Приготовление раствора Гетри проводили по методике, описанной в ГОСТ 21802-84 [3].

Полученный раствор наливали в кюветы с плоско-параллльными стенками объемом 1,6 мл. Кювета помещалась между красным излучателем и входной апертурой прибора таким образом, чтобы оптический центр излучателя был в зоне геометрического центра кюветы (рис.2).

Рисунок 2 - Градуировка прибора с помощью раствора Гетри

Разбавление осуществляли водой, и на каждой заданной концентрации проводили измерения интенсивности прошедшего через кювету в 6 повторностях. В качестве значения нулевой концентрации брали показания прибора при введении в оптический тракт кюветы с дистиллированной водой. Полученная градуировочная кривая показывает возможность оптической оценки относительного содержания хлорофилла во всем возможном диапазоне его концентрации (рис.3).

Третий этап испытаний - режим комплексной диагностики. Возможно несколько вариантов изменения функционального статуса листьев (ФС): 1 - изменение содержание хлорофилла с сохранением удельной фотосинтетической активности (например, процессы осенней деградации хлорофилла), 2 - изменения фотосинтетической активности на фоне сохранения концентрации хлорофилла и 3 – меняются оба показателя – и концентрация хлорофилла и фотосинтетическая активность. Следует оценить все возможные алгоритмы обработки данных выбрать такие, которые будут одинаково успешны для всех трех случаев.

Рисунок 3 - Градуировочная кривая связи показаний прибора и концентрации раствора Гетри

Для реализации первого варианта ФС использовали листья смородины черной с различным содержанием хлорофилла, взятые с одного растения в конце августа 2020 года (сорт Белорусская сладкая). Для анализа листья были сгруппированы на 4 группы по визуальному состоянию: зеленые, светлозеленые, желтеющие и желтые (рис.4).

Рисунок 4 - Внешний вид экспериментальных образцов листьев

После часовой тепловой И темновой адаптации проводили инструментальную оценку с помощью макетного образца разработанного прибора трех базовых показателей: интенсивность прошедшего через лист излучения красной области спектра (Inp), максимальную и стационарную интенсивность флуоресценции, возбуждаемой в синей области спектра. Максимальная интенсивность (Fmax) выбиралась из показаний непрерывной записи флуоресцентного потока с частотой 0,4 отсчета в секунду, а стационарная интенсивность оценивалась на 60 секунде индукции флуоресценции после достижения максимума (Fst-60s). Затем осуществляли расчет всех возможных показателей из данной комбинации параметров, а именно: Y=(Fmax - Fst-60s)/Fmax; $\Pi\Phi C1=Fmax/Inp$; $\Pi\Phi C2=1000xY/Inp$; $\Pi\Phi C3 = (Fmax - Fst-60s)/Inp$

Исходные данные и рассчитанные показатели, приведенные в таблице 2, далее прошли процедуру расчета вероятности 0-гипотезы по критерию Стьюдента для определения достоверности различий по следующим парам сравнения: Зеленые - Желтеющие; Желтеющие - Светло-зеленые; Светло-зе1леные - Зеленые. Наибольшая достоверность по всем парам сравнения отмечается у следующих показателей: *Inp и ПФС2*. Как и следовало ожидать, все показатели, связанные только с параметрами медленной индукции флуоресценции хлорофилла не дают достоверных различий у близких по функциональному состоянию листьев, так как удельная фотосинтетическая активность одинаковая. И только когда в листьях практически нет хлорофилла, что приводит к существенному снижению интенсивностей флуоресценции $Fmax\ u\ Fst-60s$, наблюдаются достоверные различия варианта «желтый» со всеми остальными вариантами по всем критериям, кроме Y.

	Тип листьев смородины черной					
Параметр	Зеленые	Светло зеленые	Желтеющие	Желтые		
Inp	$63,66 \pm 0,405$	$83,32 \pm 5,03$	$122,68 \pm 4,73$	$403,28 \pm 14,6$		
Fmax	89,83 ± 4,40	$86,93 \pm 5,02$	$97,57 \pm 6,26$	$55,95 \pm 6,024$		
Fst-60s	$16,97 \pm 1,46$	$18,05 \pm 1,79$	$17,85 \pm 0,566$	$11,78 \pm 1,100$		
Y	0.812 ± 0.079	$0,792 \pm 0,019$	0.813 ± 0.0084	$0,783 \pm 0,024$		
ΠΦC1	$1,41 \pm 0,069$	$1,056 \pm 0,114$	$0,796 \pm 0,042$	$0,140 \pm 0,017$		
ПФС2	$12,76 \pm 0,095$	$9,56 \pm 0,511$	$6,706 \pm 0,275$	$1,957 \pm 0,12$		
ПФС3	$1,14 \pm 0,059$	$0,836 \pm 0,093$	$0,65 \pm 0,0405$	$0,111 \pm 0,015$		

Второй возможный вариант функционального состояния фотосинтезирующего аппарата - это снижение фотосинтетической активности хлоропластов на фоне постоянной концентрации хлорофилла. Для испытаний были выбраны здоровые темно-зеленые листья лимона и проведены измерения на приборе до и через час после термоинактивации горячей водой при температуре 50°C (таблица 3).

 $\label{eq:2.2} \begin{picture}(100,0) \put(0,0){Taблица 3.} \end{picture}$ Параметры диагностики здоровых и инактивированных листьев лимона. Данные представлены в виде: среднее \pm ошибка среднего

Параметр	Здоровый	Инактивированный	Вероятность
			0-гипотезы
Inp	$19,22 \pm 0,835$	17,35 ±1,042	0,175177
Fmax	$47,56 \pm 1,361$	$20,53 \pm 0,397$	8,3·10 ⁻¹¹
Fst-60s	$10,61 \pm 0,462$	$14,38 \pm 0,294$	1,6·10 ⁻⁶
Y	$0,78 \pm 0,005$	$0,2995 \pm 0,0058$	9,8·10 ⁻²⁶
ПФС1	$2,52 \pm 0,124$	$1,23 \pm 0,08$	1,37·10-9
ПФС2	$41,29 \pm 1,77$	$17,89 \pm 1,026$	2,08·10 ⁻¹⁰
ПФС3	$1,95 \pm 0,084$	$0,368 \pm 0,08$	4,88·10 ⁻⁸

В данном случае сильно варьируют параметры, связанные с медленной индукцией флуоресценции хлорофилла на фоне практически не меняющейся оптической плотности листьев в красной области спектра. Наиболее значимые изменения отмечаются у критериев Y и $\Pi\Phi C3$.

Для тестировании работоспособности прибора в третьем случае ФС оценивали оптические параметры листьев лимона с различным содержанием хлорофилла, визуально классифицируемые как «Желтые», «Светло-зеленые» и «Темно-зеленые» с уровнем фотосинтетической активности 0,2-0,25; 0,4-0,53 и 0,6-0,8 соответственно. На рис.5 представлены типовые графики изменения информационного сигнала листьев всех трех вариантов опыта, отражающие режим циклического измерения в следующем порядке: измерение уровня фона (1 сек) — включение красного излучателя и измерение интенсивности прошедшего через лист света (4-5 сек) — темновая пауза (3-4 сек) — включение синего излучателя и измерение интенсивности флуоресцентного сигнала (90-120 секунд). В табл. 5 — средние значения всех измеряемых и расчетных показателей.

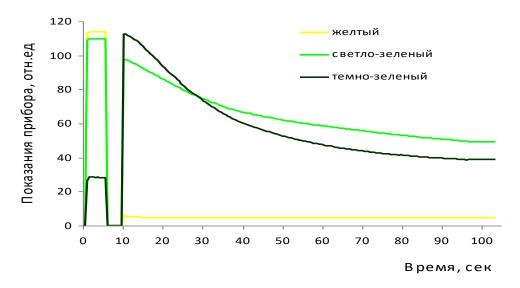


Рисунок 5 – Типовые графики изменения сигнала в зависимости от содержания хлорофилла и фотосинтетической активности листьев лимона

Сводные данные информационных показателей листьев лимона, полученные с помощью макетного образца комбинированного прибора

Варианты	Inp	Fmax	Fs	Y	100*Y/Inp	Fm/Inp
желтый	113,77±4,8	6,1±0,83	4,88±0,66	$0,2\pm0,07$	$0,176\pm0,03$	$0,054\pm0,008$
светло-зеленый	109,88±7,1	97,44±6,6	49,35±4,83	0,49±0,11	$0,449\pm0,09$	$0,887\pm0,22$
темно-зеленый	28,47±1,6	112,62±4,7	38,18±2,22	0,66±0,17	2,32±0,34	3,95±1,04

Заключение

Проведены испытания комбинированного оптического прибора, доказавшие работоспособность используемой конструкции и предложенных диагностических критериев, а также корректность оценки функционального состояния листьев растений по критериям относительного содержания хлорофилла и фотосинтетической активности за один измерительный цикл.

Список литературы:

- 1. Будаговская О.Н. Конструкция макетного образца оптического прибора для оценки функционального состояния листьев растений по критериям фотосинтетической активности и относительного содержания хлорофилла// Электронный журнал Наука и образование. Т.6. №2.
- 2. Воробьев Н.В., Невмержицкая Ю.Ю., Хуснетдинова Л.З., Якушенкова Т.П. Практикум по физиологии растений. Учебно-методическое пособие. Казань: Казанский университет. 2013. 80 с.
- 3. ГОСТ 21802-84. Паста хвойная хлорофилл-каротиновая. Технические условия. М.: Из-во стандартов. 1984.14 с.

UDC 62:535.8:634

TEST RESULTS OF THE COMBINED OPTICAL INSTRUMENT FOR EVALUATION PHOTOSYNTHETIC ACTIVITY AND RELATIVE CHLOROPHYLLASE CONTENT ONE MEASURING CYCLE

Olga N. Budagovskaya

doctor of technical Sciences, leading researcher Engineering Center
budagovsky@mail.ru
Federal research Center named after I. V. Michurin
Michurinsk State Agrarian University
Michurinsk, Russia

Annotation. he test data of an optical device for a comprehensive assessment of the functional state of plants according to the criteria of photosynthetic activity and relative chlorophyll content in one measuring cycle are presented.

Keywords: photosynthetic activity, relative chlorophyll content, leaves, combined device, tests

Статья поступила в редакцию 05.09.2023; одобрена после рецензирования 16.10.2023; принята к публикации 27.10.2023.

The article was submitted 05.09.2023; approved after reviewing 16.10.2023; accepted for publication 27.10.2023.