ДВОЙСТВЕННЫЙ СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ (С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MAPLE)

Борис Игнатьевич Смагин

доктор экономических наук, профессор

bismagin@mail.ru

Мичуринский государственный аграрный университет г. Мичуринск, Россия

Аннотация. Двойственный симплексный метод является модификацией симплексного метода, применяемый в случаях, когда свободные члены в системе ограничений принимают отрицательные значения. В статье рассмотрены примеры задач, имеющих конечное решение, а также не имеющие решения изза пустоты области допустимых решений. Решение всех задач проиллюстрировано с использованием системы символьной математики Марle.

Ключевые слова: задача линейного программирования, двойственный симплексный метод, система Maple, оптимизация.

Как следует из доказательства первой основной теоремы двойственности, принципиально допустимо решать задачу линейного программирования, когда среди свободных членов в системе ограничений имеются отрицательные числа. В процессе реализации соответствующего алгоритма, получившего название двойственного симплексного метода, мы получаем допустимое (если область допустимых решений не пуста) и оптимальное (если функция цели ограничена) решение [2].

Итак, для решения задачи линейного программирования применяется алгоритм двойственного симплексного метода, если система ограничений задачи задана в виде уравнений, содержит единичный базис, но среди свободных членов имеются отрицательные числа.

Пусть $b_k < 0$, тогда k - e ограничение имеет вид:

$$a_{k1}x_1 + a_{k2}x_2 + ... + a_{kn}x_n = b_k$$
 (1)

Если все $a_{ki} \ge 0$ (j = 1, 2, ..., n), то задача линейного программирования не имеет решения из-за пустоты области допустимых решений. Действительно, если все $a_{ki} \ge 0$, то в силу неотрицательности переменных x_i все слагаемые в левой (1) части равенства будут неотрицательны, ИХ сумма также будет неотрицательной величиной и, следовательно, не может быть равна $b_k < 0$. Если же некоторые $a_{ki} < 0$, то для столбцов, содержащих эти отрицательные значения, вычисляем $\theta_i = \min\{b_i/a_{ii}\} \ge 0$. Отметим, что разрешающим элементом в данном случае может быть и отрицательное число, важно чтобы отношение b_i /a_{ii} было неотрицательным. Если $\theta_i = 0$ (т.е. $b_i = 0$), то a_{ii} берется за разрешающий элемент только в том случае, если a_{ii}>0. Такой выбор разрешающего элемента на данном этапе не приводит к увеличению количества отрицательных компонент вектора $X = (x_1, x_2, ..., x_n).$

Процесс решения задачи разбивается на два этапа. На первом этапе необходимо избавиться от отрицательности в столбце свободных членов, на втором – полученную задачу решаем симплексным методом.

Пример 1. Решить задачу линейного программирования двойственным симплексным методом:

$$Z = x_1 + x_2 \rightarrow \min$$

$$x_1 + 2x_2 \le 14$$

$$-5x_1 + 3x_2 \le 15$$

$$4x_1 + 6x_2 \ge 24$$

$$x_1 \ge 0; x_2 \ge 0.$$

Введя дополнительные переменные x_3 , x_4 и x_5 , сведем систему ограничений к уравнениям. Тогда задача примет вид:

$$Z = x_1 + x_2 \rightarrow \min$$

$$x_1 + 2x_2 + x_3 = 14$$

$$-5x_1 + 3x_2 + x_4 = 15$$

$$4x_1 + 6x_2 - x_5 = 24$$

$$x_j \ge 0; j=1,2,...5.$$

Полученная система уравнений содержит два единичных вектора (коэффициенты при переменных x_3 и x_4). Для получения третьего единичного вектора умножим третье уравнение на -1. Тогда задача преобразуется к виду:

$$Z = x_1 + x_2 \rightarrow \min$$

$$x_1 + 2x_2 + x_3 = 14$$

$$-5x_1 + 3x_2 + x_4 = 15$$

$$-4x_1 - 6x_2 + x_5 = -24$$

$$x_j \ge 0; j = 1, 2, ..., 5.$$

Составим первую симплексную таблицу.

Таблица 1

i	Базис	С	В	1	1	0	0	0
		базиса		\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5
1	\mathbf{A}_3	0	14	1	2	1	0	0
2	\mathbf{A}_4	0	15	-5	3	0	1	0
3	\mathbf{A}_5	0	-24	-4	-6	0	0	1
m+1	$Z_j - C_j$		0	-1	-1	0	0	0

Так как $x_5 = -24 < 0$, то просматриваем элементы третьей строки. Среди них имеются два отрицательных коэффициента, стоящие в столбцах, соответствующих векторам \mathbf{A}_1 и \mathbf{A}_2 . Имеем: $\theta_1 = \min(14/1; -24/-4) = 6$; $\theta_1 \cdot q_1 = 6 \cdot (-1) = -6$;

$$\theta_2 = \min(14/2; 15/3; -24/-6) = 4; \theta_2 \cdot q_2 = 4 \cdot (-1) = -4.$$

Вводя в базис вектор \mathbf{A}_1 , мы увеличиваем значение целевой функции на 6, а вводя вектор \mathbf{A}_2 — на 4. Поэтому вводим в базис вектор \mathbf{A}_2 . Используя алгоритм симплексного метода, переходим к следующей симплексной таблице.

Таблица 2

:	і Базис	С	D	1	1	0	0	0
		базиса	В	\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5
1	\mathbf{A}_3	0	6	-1/3	0	1	0	1/3
2	\mathbf{A}_4	0	3	- 7	0	0	1	1/2
3	\mathbf{A}_2	1	4	2/3	1	0	0	-1/6
m+1	$Z_j - C_j$		4	-1/3	0	0	0	-1/6

 \overline{B} данной таблице получен оптимальный план: $\overline{Z}_{min}=4;\ x_1=0;\ x_2=4;\ x_3=6;\ x_4=3;\ x_5=0.$

Система символьной математики Maple позволяет решать множество математических задач, в том числе и задач линейного программирования [1]:

- > with(simplex):
- > $minimize(x1 + x2, \{x1 + 2 \cdot x2 \le 14, -5 \cdot x1 + 3 \cdot x2 \le 15, 4 \cdot x1 + 6 \cdot x2 \ge 24, x1 + x2 z = 0\}, NONNEGATIVE);$

$$\{x1=0, x2=4, z=4\}$$

Предложенная процедура выбора разрешающего элемента не является оптимальной для всех задач линейного программирования, решаемых двойственным симплексным методом. Однако она не приводит к увеличению количества отрицательных переменных.

В случае если все элементы столбца свободных членов отрицательны, θ_{i} следует выбирать не по минимуму, а по максимуму отношений, т.е. $\theta_{i} = \frac{\max(b_{i}/a_{ij}) > 0}{\sum_{i=1}^{n} a_{ij}}$

Пример 2. Решить задачу линейного программирования двойственным симплексным методом:

$$Z = 2x_1 + 8x_2 + x_3 + 5x_4 \rightarrow \min$$

$$2x_1 - x_2 + 3x_3 - x_4 + x_5 = -18$$

$$-x_1 - 2x_2 - 4x_3 - 2x_4 + x_6 = -24$$

$$-3x_1 - 4x_2 - 2x_3 + 3x_4 + x_7 = -30$$

$$x_j \ge 0; j = 1, 2, ..., 7.$$

Построим первую симплексную таблицу, введя в базис векторы ${\bf A}_5,\,{\bf A}_6$ и ${\bf A}_7.$

Таблица 3

і Базис	С	ъ	2	8	1	5	0	0	0	
	Базис	базиса	В	\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5	\mathbf{A}_6	\mathbf{A}_7
1	\mathbf{A}_5	0	-18	2	-1	3	-1	1	0	0
2	\mathbf{A}_6	0	-24	-1	-2	-4	-2	0	1	0
3	\mathbf{A}_7	0	-30	-3	-4	-2	3	0	0	1
m+1	Z_j -	- C _j	0	-2	-8	-1	-5	0	0	0

В данной таблице все значения переменных отрицательны. В базис введем вектор \mathbf{A}_2 , т.к. в этом столбце все элементы отрицательны, а это позволяет избавиться от наибольшего количества отрицательных элементов в столбце свободных членов: $\theta_2 = \max(-18/-1; -24/-2; -30/-4) = 18$. Таким образом, в базис входит вектор \mathbf{A}_2 , исключается из базиса вектор \mathbf{A}_5 , разрешающий элемент =-1.

Таблица 4

	; Горио	С	В	2	8	1	5	0	0	0
1 Do	Базис	базиса		\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	${f A}_4$	\mathbf{A}_5	\mathbf{A}_6	\mathbf{A}_7
1	\mathbf{A}_2	8	18	-2	1	-3	1	-1	0	0
2	\mathbf{A}_6	0	12	-5	0	-10	0	-2	1	0
3	\mathbf{A}_7	0	42	-11	0	-14	7	-4	0	1
m+1	Z _j -	- C _j	144	-18	0	-25	3	-8	0	0

В полученной таблице столбец **В** не содержит отрицательных элементов, следовательно, далее задачу решаем обычным симплексным методом. План, помещенный в таблице 4. не является оптимальным, т.к. в (m+1) – й строке оценка $q_4 = Z_4 - C_4 = 3 > 0$. Это означает, что вектор \mathbf{A}_4 следует ввести в базис; θ_4 = min (18/1; 42/7) = 6. Таким образом, из базиса исключается вектор \mathbf{A}_7 , разрешающий элемент равен 7.

Таблица 5

:	Базис	С	В	2	8	1	5	0	0	0
1 разис	базиса	ь	\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5	\mathbf{A}_6	\mathbf{A}_7	
1	\mathbf{A}_2	8	12	-3/7	1	-1	0	-3/7	0	-1/7
2	\mathbf{A}_6	0	12	-5	0	-10	0	-2	1	0
3	\mathbf{A}_4	5	6	-11/7	0	-2	1	-4/7	0	1/7
m+1	Z_j -	- C _j	126	-93/7	0	-19	0	-44/7	0	-3/7

В таблице 5 получен оптимальный план: $Z_{min}=126; x_1=0; x_2=12; x_3=0;$ $x_4=6; x_5=0; x_6=12; x_7=0.$

В системе Maple решение этой задачи выглядит следующим образом:

> with(simplex):

>
$$minimize(2 \cdot x1 + 8 \cdot x2 + x3 + 5 \cdot x4, \{2 \cdot x1 - x2 + 3 \cdot x3 - x4 + x5 = -18, -x1 - 2 \cdot x2 - 4 \cdot x3 - 2 \cdot x4 + x6 = -24, -3 \cdot x1 - 4 \cdot x2 - 2 \cdot x3 + 3 \cdot x4 + x7 = -30, 2 \cdot x1 + 8 \cdot x2 + x3 + 5 \cdot x4 - z = 0\},$$
 $NONNEGATIVE);$

$${x1 = 0, x2 = 12, x3 = 0, x4 = 6, x5 = 0, x6 = 12, x7 = 0, z = 126}$$

Пример 3. Используя двойственный симплексный метод, решить задачу линейного программирования:

$$Z = 2x_1 - 5x_2 \rightarrow \min$$

$$4x_1 + 3x_2 + x_3 = 12$$

$$-3x_1 - 4x_2 + x_4 = -24$$

$$x_j \ge 0; j = 1, 2, 3, 4.$$

Составим первую симплексную таблицу, введя в базис векторы A_3 и A_4 .

i	Базис	С базиса	В	2 \mathbf{A}_1	-5 \mathbf{A}_2	\mathbf{A}_3	$egin{array}{c} 0 \ oldsymbol{A}_4 \end{array}$
1	\mathbf{A}_3	0	12	4	3	1	0
2	\mathbf{A}_4	0	-24	-3	-4	0	1
m+1	$Z_j - C_j$		0	-2	5	0	0

Так как $x_4 = -24 < 0$, то просматриваем коэффициенты второй строки. Среди них два отрицательных коэффициента, стоящие в столбцах, соответствующих векторам \mathbf{A}_1 и \mathbf{A}_2 . Имеем:

$$\theta_1 = \min(12/4; -24/-3) = 3; \ \theta_1 \cdot q_1 = 3 \cdot (-2) = -6;$$

 $\theta_2 = \min(12/3; -24/-4) = 4; \ \theta_2 \cdot q_2 = 4 \cdot 5 = 20.$

Таким образом, при введении в базис вектора \mathbf{A}_1 значение целевой функции возрастает на 6, а при введении вектора \mathbf{A}_2 – уменьшается на 20. Так как задача решается на минимум, то в базис следует ввести вектор \mathbf{A}_2 .

Таблица 7

i	Базис	С базиса	В	2 \mathbf{A}_1	-5 A ₂	0 \mathbf{A}_3	0 \mathbf{A}_4
1	\mathbf{A}_2	-5	4	4/3	1	1/3	0
2	\mathbf{A}_4	0	-8	7/3	0	4/3	1
m+1	$Z_j - C_j$		-20	-26/3	0	-5/3	0

В полученной таблице $x_4 = -8 < 0$. В соответствующей этому элементу второй строке отсутствуют отрицательные элементы. Следовательно, задача линейного программирования не имеет решений из-за пустоты области допустимых решений.

Приводим решение данной задачи в системе Maple:

> with(simplex):

>
$$minimize(2 \cdot x1 - 5 \cdot x2, \{4 \cdot x1 + 3 \cdot x2 + x3 = 12, -3 \cdot x1 - 4 \cdot x2 + x4 = -24\}, NONNEGATIVE);$$

что подтверждает отсутствие оптимального решения из-за пустоты области допустимых решений.

Список литературы:

- 1. Касюк С.Т., Логвинова А.А. Высшая математика на компьютере в программе Maple 14 / Челябинск: ЮУрГУ. 2011. 57с.
- 2. Смагин Б.И. Экономико-математические методы: учебник для академического бакалавриата // 2-е изд., испр. и доп. М.: Издательство Юрайт. 2017. 272с.

UDC 519.8(075.8)

THE DUAL SIMPLEX METHOD OF SOLVING LINEAR PROGRAMMING PROBLEM (USING MAPLE)

Boris I. Smagin

doctor of economic sciences, professor
bismagin@mail.ru
Michurinsk State Agrarian University
Michurinsk, Russia

Abstract. The Dual simplex method is a modification of the simplex method applied in cases where the free members of the system of constraints take negative values. The article considers an example of a task that has the final decision and has no solutions because of the emptiness of the region of feasible solutions. All tasks are illustrated using the Maple symbolic mathematics.

Key words: linear programming, dual simplex method, system Maple, optimization.

Статья поступила в редакцию 10.05.2023; одобрена после рецензирования 15.06.2022; принята к публикации 30.06.2023.

The article was submitted 10.05.2023; approved after reviewing 15.06.2022; accepted for publication 30.06.2023.