ОБОСНОВАНИЕ ПОЛУЧЕНИЯ РАССОЛЬНИКА С ФУНКЦИОНАЛЬНЫМ ИНГРЕДИЕНТОМ ДЛЯ ПРОФИЛАКТИЧЕСКОГО ПИТАНИЯ

Татьяна Николаевна Сухарева

кандидат сельскохозяйственных наук, доцент

t-suh@inbox.ru

Мария Олеговна Самородова

студент

mashulya_samorodova@mail.ru

Мичуринский государственный аграрный университет

г. Мичуринск, Россия

Аннотация. С целью улучшения пищевой и биологической ценности рассольника была исследована возможность введения в традиционный рассольник морской капусты.

Ключевые слова: рассольник, профилактическое питание, обоснование, функциональные ингредиенты, морская капуста.

Питание является важнейшей физиологической потребностью организма. Оно необходимо нам для пополнения энергетических затрат, построения и обновления клеток, поступления веществ, необходимых для образования ферментов, гормонов и других регуляторов обменных веществ. Здоровье современного человека напрямую зависит от его образа жизни и питания. Исследования, проводимые в течение многих лет, в НИИ питания РАМН и других научных учреждениях говорят о большом дефиците в рационе человека пищевых волокон, витаминов, микро- и макроэлементов, полиненасыщенных жирных кислот и других необходимых нашему организму веществ [2,3,5,8,9].

Научное обоснование и подбор основного сырья и функциональных ингредиентов имеют первостепенное значение при разработке функциональных продуктов для профилактического питания. При этом необходимо учитывать функциональную направленность продукта [1,4,6,7,10].

Содержание питательных веществ и пищевая ценность морской капусты приведены в таблице 1.

Таблица 1

Химический состав и пищевая ценность морской капусты (на 100 г продукта)

Показатели	Морская капуста		
Белки, %	1,2		
Жиры, %	0,4		
Углеводы, %	1,4		
Пищевые волокна, %	3		
Вода, %	3,9		
Зола, %	6,61		
Органические кислоты, %	2,5		
Минералы	ные вещества		
Кальций, мг, %	4		
Железо, мг, %	88,9		
Магний, мг, %	42,5		
Фосфор, мг, %	6,9		
Натрий, мг. %	40		
Цинк, мг, %	10,3		
Калий, мг, %	38,8		
Вит	амины		
Витамин А, мг, %	0.3		
Витамин В1, мг, %	2,7		
Витамин Е, мг, %	5,8		
Витамин В4, мг, %	2,6		
Витамин С, мг, %	2,2		
Витамин В2, мг, %	3,3		
Энергетическая ценность, ккал	24,9		

Данные таблицы 1 свидетельствуют о том, что морская капуста характеризуется такими витаминами и минералами, как: витамином B_5 - 12.8~%,

витамином B_{12} - 33,3 %, витамином K - 55 %, калием - 38,8 %, кремнием - 170 %, магнием - 42,5 %, хлором - 45,9 %, железом - 88,9 %, йодом - 1666,7 %, кобальтом - 150 %, медью - 13 %. Морская капуста — источник белков и углеводов, а также йода. Именно благодаря высокому содержанию последнего она используется для лечения заболеваний крови, гормональных сбоев и нарушения обмена веществ. Кроме того, ламинария улучшает пищеварение и работу печени, очищает организм от шлаков и тяжелых металлов, что особенно актуально для жителей мегаполисов.

Картофель — это многолетнее клубненосное растение, представляющее собой один из самых важных продуктов питания. В белках картофеля имеются практически все известные аминокислоты, которые встречаются в растениях. Помимо большого содержания углеводов, фосфора, калия и витамина С, картофель обладает уникальной клетчаткой, которая абсолютно не раздражает слизистую желудка. Картофельный крахмал способствует снижению уровня холестерина в крови.

Химический состав картофеля(на 100 г продукта)представлен в таблице 2. *Таблица 2*

Химический состав картофеля (на 100 г продукта)

Показатели	Картофель		
Белки ,%	2,6		
Жиры,%	0,7		
Углеводы,%	7,4		
Пищевые волокна, %	7		
Вода, %	3,5		
Крахмал, %	17,5		
Минеральн	ые вещества		
Калий, мг. %	22,7		
Йод, мг, %	3,3		
Магний, мг, %	5,8		
Медь, мг, %	14		
Железо, мг. %	5		
Цинк, мг, %	3		
Хром, мг, %	20		
Вита	мины		
Витамин А, мг, %	0,3		
Витамин РР, мг, %	9		
Витамин С, мг, %	22,2		
Витамин Е, мг, %	0,7		
Витамин В1, мг, %	8		
Витамин В2, мг, %	3,9		
Энергетическая ценность, ккал	77		

Главное богатство моркови — бета-каротин, предшественник витамина А, из-за которого у корнеплода такой яркий оранжево-желтый цвет. Всего 3-4 средние моркови в день способны покрыть суточную потребность нашего организма в этом элементе. Морковь по содержанию витаминов превосходит не только все овощи, но и мясомолочную продукцию. В ней много минеральных веществ: кальция, натрия, калия, магния, фосфора, железа, йода и других полезных веществ.

Химический состав моркови (на 100 г продукта) представлен в таблице 3.

Таблица 3

Химический состав моркови (на 100 г продукта)

Показатели	Морковь
Белки, %	1,7
Жиры,%	0,2
Углеводы,%	3,2
Вода,%	3,9
Зола,%	0,97
Пищевые волокна,%	12
Минеральнь	вещества
Калий, мг. %	8
Фосфор, мг, %	6,9
Кремний, мг. %	83,3
Йод, мг, %	3,3
Медь, мг, %	8
Натрий, мг. %	1,6
Кальций, мг. %	2,7
Витам	ины
бетта Каротин, мг, %	240
Витамин А, мг, %	222,2
Витамин В6, мг, %	6,5
Витамин В4, мг, %	1,8
Витамин С, мг, %	5,6
Энергетическая ценность, ккал	35

Химический состав и пищевая ценность петрушки(корень) на 100 г продукта представлен в таблице 4.

Таблица 4

Химический состав и пищевая ценность петрушки (корень) на 100 г продукта

Показатели	Петрушка (корень)
Белки, %	2
Жиры,%	1,1
Углеводы, %	4,6
Вода, %	3,7
Зола, %	2,2
Пищевые волокна, %	16
Крахмал, %	4
Минеральн	ые вещества
Калий, мг, %	13,7
Фосфор, мг, %	9,1
Натрий, мг. %	0,6
Магний, мг, %	5,5
Цинк, мг, %	10,8
Марганец, мг, %	21
Вита	мины
Витамин В1, мг, %	5,3
Витамин В2, мг, %	5,6
Витамин В4, мг, %	1,5
Витамин А, мг, %	0,2
Витамин С, мг, %	38,9
Витамин Е, мг, %	0,7
Витамин РР, мг, %	6,5
Энергетическая ценность, ккал	51

Данные таблицы 4 свидетельствуют о том, что внутри корня петрушки скрывается большое количество полезных минералов и микроэлементов, среди которых стоит выделить витамин С и группы В, витамины Р и А. Также в составе петрушки достаточное количество витамин Е, РР, содержится фосфор и марганец, калий и кальций.

Сельдерей (корень) богат такими витаминами и минералами, как: витамином К - 34,2 %, калием - 15,7 %, кремнием - 96,7 %, кобальтом - 18 %, которые отвечают за очищение и омоложение организма, помогают в борьбе с простудными заболеваниями и улучшают подвижность суставов. Корнеплод обладает низкой калорийностью, так что он отлично подойдет для диетического питания.

Химическийсоставкорневого сельдерея (на 100 г продукта) представлен в таблице 5

Таблица 5

Химический состав корневого сельдерея (на 100 г продукта).

Показатели	Сельдерей (корень)
Белки, %	1,7
Жиры, %	0,5
Углеводы, %	3
Вода, %	3,9
Caxap, %	2,2
Пищевые волокна, %	15,5
Клетчатка, %	6,5
Вит	амины
Витамин С, мг, %	8,9
Витамин В2, мг, %	3,3
Витамин В6, мг, %	7,5
Витамин Е, мг, %	3,3
Витамин К, мг, %	34,2
Минеральн	ные вещества
Калий, мг. %	15,7
Кремний, мг, %	96,7
Кобальт, мг, %	18
Хром, мг, %	4,8
Железо, мг, %	2,8
Энергетическая ценность, ккал	34

Лук репчатый богат такими витаминами и минералами, как: витамином С - 11,1 %, кремнием - 16,7 %, кобальтом - 50 %, марганцем - 11,5 %. Это мощное противомикробное средство, которое эффективно борется с внутренней и внешней инфекцией. Лук обладает противовирусными, антибактериальными, противоглистными, противогрибковыми, дезинфицирующими свойствами. Улучшает репчатый лук и работу мозга.

Химический состав репчатого лука (на 100 г продукта) представлен в таблице 6 .

Таблица 6

Химический состав репчатого лука (на 100 г продукта).

Наименование	Лук репчатый
Белки, %	1,8
Углеводы, %	3,7
Жиры, %	0,4
Вода, %	3,8
Пищевые волокна, %	15
Витам	ины
Витамин С, мг, %	11,1
Витамин В1, мг, %	3,3
Витамин В6, мг, %	6
Минеральны	е вещества
Кремний, мг, %	16,7
Кобальт, мг, %	50
Медь, мг, %	8,5
Магний, мг, %	3,5
Энергетическая ценность, ккал	41

Химический состав лука порея (на 100 г продукта).

Наименование	Лук порей			
Белки, %	2,6			
Углеводы, %	2,9			
Вода, %	3,9			
Зола, %	1,2			
Ви	тамины			
Витамин А, мг, %	37			
бетта Каротин, мг, %	40			
Витамин К, мг, %	39,2			
Витамин С, мг, %	38,9			
Витамин В6, мг, %	15			
Минеральные вещества				
Кобальт, мг, %	26			
Медь, мг, %	12			
Кремний, мг, %	116,7			
Марганец, мг, %	24			
Энергетическая ценность, ккал	36			

Лук порей богат такими витаминами и минералами, как: витамином A - 37 %, бета-каротином - 40 %, витамином B_6 - 15 %, витамином C - 38,9 %, витамином K - 39,2 %, кремнием - 116,7 %, кобальтом - 26 %, марганцем - 24 %, медью - 12 %, что является полезными свойствами для человеческого организма. Порей улучшает зрение, укрепляет кости, зубы и многое другое.

Все соленые и квашеные продукты — это кладезь полезных молочнокислых бактерий. Они устраняют гнилостные процессы в ЖКТ, а также заселяют кишечник, предотвращая размножение патогенной микрофлоры и симптомы дисбактериоза. Дефицит йода — частая проблема как у взрослых, так и у детей. Соленые огурцы содержат много йодных соединений, что оказывает благоприятное действие на щитовидную железу.

Химический состав соленого огурца (на 100 г продукта) представлен в таблице 8.

 Таблица 8

 Химический состав соленого огурца (на 100 г продукта).

Показатели	Соленый огурец		
Белки, %	1,1		
Пищевые волокна, %	4		
Углеводы, %	0,8		
Вода, %	4		

Клетчатка, %	0,08			
Витамины				
Витамин В1, мг, %	1,3			
Витамин С, мг, %	5,6			
Витамин В2, мг, %	1,1			
Витамин РР, мг, %	1			
Минеральные вещества				
Натрий, мг, %	85,5			
Калий, мг, %	5,6			
Железо, мг, %	3,3			
Энергетическая ценность, ккал	13			

Восполнить необходимое количество витаминов, макро- и микроэлементов возможно, благодаря физической активности, воздушным процедурам и отсутствием стресса, а также рациональному и разнообразному питанию с использованием значительного количества натуральной пищи растительного происхождения.

Список литературы:

- 1. Гридчина А.С., Ничипоренко А.А. Нетрадиционные виды сырья в пищевых продуктах для пожилых//Сборник: Молодые исследователи агропромышленного и лесного комплексов регионам. 2021. С.188-191.
- Брыксина К.В., Ратушный А.С. Применение функционального ингредиента растительного происхождения с высокими антиоксидантными свойствами при разработке продукта для здорового питания // Приоритетные направления развития садоводства (І Потаповские чтения): Материалы 85-й Национальнойнаучно-практической конференции, посвященной годовщине со дня рождения профессора, доктора сельскохозяйственных наук, лауреата Государственной премии Потапова Виктора Александровича, Мичуринск, 11–13 декабря 2019 года / отв. ред. Григорьева Л.В. Мичуринск: Мичуринский ГАУ. 2019. C. 281-284. – EDN IJHIRK.
- 3. Донченко Л.В., Влащик Л.Г., Звягинцева В.В. Разработка Специализированных продуктов с использованием пищевых волокон // Горинские чтения. Наука молодых инновационному развитию АПК: Материалы Международной студенческой научной конференции. Майский, 28—

- 29 марта 2019 года. Том 2. Майский: Белгородский государственный аграрный университет имени В.Я. Горина. 2019. С. 183-184. EDN KLSYPY.
- 4. Коршикова А. О., Попенко В.П. Анализ сбалансированости питания студентов ФГБОУ ВО Белгородский ГАУ // Горинские чтения. Наука молодых инновационному развитию АПК : Материалы Международной студенческой научной конференции, Майский, 28–29 марта 2019 года. Том 2. Майский: Белгородский государственный аграрный университет имени В.Я. Горина. 2019. С. 296-297. EDN BISXCG.
- 5. Полянская И. С. Функциональные продукты питания: По стопам Вернадского, Покровского, Мечникова, Королева, Чижевского. Саарбрюккен :LAPLAMBERT. 2014. 139 с.
- 6. Проектирование и исследование мясных полуфабрикатов с растительным сырьем для здорового питания / Т. Н. Сухарева, К. В. Гусева, Ю. А. Данилкина [и др.] // Потенциал науки и современного образования в решении приоритетных задач АПК и лесного хозяйства: Материалы Юбилейной национальной научно-практической конференции, Рязань, 20–21 февраля 2019 года / Рязанский государственный агротехнологический университет им. П.А. Костычева. Рязань: Рязанский государственный агротехнологический университет им. П.А. Костычева. 2019. С. 304-307. EDN FTNFVA.
- 7. Роль продуктов функционального назначения в питании человека / А. С. Ратушный, К. В. Брыксина, С. С. Борзикова [и др.] // Наука и Образование. 2018. Т. 1. № 1. С. 56. EDNVUAQWQ.
- 8. Скоркина И. А., Телегина А. В. Влияние пюре из баклажанов на влагосвязывающую способность свиного фарша//Технологии пищевой и перерабатывающей промышленности АПК Продукты здорового питания. 2014. № 1 (1). С. 94-96.
- 9. Скоркина, И. А., Третьякова Е. Н., Сухарева Т. Н. Получение биокефира функционального назначения с натуральными добавками // Пищевая промышленность. 2015. № 2. С. 8-10. EDN TKLVQH.

10. Сухарева, Т. Н., Черемисина Н. А., Польшкова А. В. Проектирование и исследование котлет рубленых из индейки с растительным ингредиентом для школьного питания // Приоритетные направления развития садоводства (І Потаповские чтения): Материалы Национальнойнаучно-практической конференции, посвященной 85-й годовщине со дня рождения профессора, доктора сельскохозяйственных наук, лауреата Государственной премии Потапова Виктора Александровича, Мичуринск, 11–13 декабря 2019 года / отв. ред. Григорьева Л.В. Мичуринск: Мичуринский ГАУ. 2019. С. 154-156. – EDN VBWFMZ.

UDK 641.827:613.2

JUSTIFICATION FOR OBTAINING A PICKLE WITH A FUNCTIONAL INGREDIENT FOR PREVENTIVE NUTRITION

Tatyana N. Sukhareva

Candidate of Agricultural Sciences, AssociateProfessor

Maria O. Samorodova

t-suh@inbox.ru

student

mashulya_samorodova@mail.ru
Michurinsk State Agrarian University
Michurinsk, Russia

Annotation. In order to improve the nutritional and biological value of the pickle, the possibility of introducing seaweed into the traditional pickle was investigated.

Keywords: pickle, preventive nutrition, justification, functional ingredients, sea cabbage.

Статья поступила в редакцию 16.02.2023; одобрена после рецензирования 20.03.2022; принята к публикации 30.03.2023.

The article was submitted 16.02.2023; approved after reviewing 20.03.2022; accepted for publication 30.03.2023.