УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ МИКРОКЛИМАТА В ЖИВОТНОВОДЧЕСКИХ ПОМЕЩЕНИЯХ

Павел Николаевич Солонщиков

кандидат технических наук, доцент

solon-pavel@yandex.ru

Ирина Алексеевна Толстоухова

магистрант

rautvill7828@mail.ru

Андрей Николаевич Лучников

магистрант

andrey-luchnikov.10.11.1998@mail.ru

Вятский государственный агротехнологический университет

г. Киров, Россия

Аннотация. В статье представлена принципиальная схема управления калорифером. Рассмотрен принцип работы калорифера в автоматическом и ручном режиме.

Ключевые слова: калорифер, схема, режим, теплица.

В систему автоматического регулирования макроклимата в теплице входят следующие узлы: регулирование температуры воздуха и почвы, а также их относительной влажности; регулирования концентрации углеродного газа и дозирования удобрений.

В блочной теплице предусмотрен комбинированный обогрев. При этом 76% общих теплопотерь покрывается водяной системой, которая состоит из основной (для обогрева воздуха) и почвенной. Остальные теплопотери компенсируются водяными калориферами. В период высокой наружной температуры вентиляторы калориферов, работающие в режиме принудительной подачи, обеспечивают кратность воздухообмена 3,1 в час. Существующие блочные теплицы старого типа, которые не имеют автоматических устройств регулирования микроклимата [1,2,3,4].

Фрамуги открываются вручную при помощи шеста, и им же удерживаются в открытом состоянии. На это затрачивается много ручного труда и времени. Управление калориферами производится только в ручном режиме.

Для автоматизации технологических процессов нами предложена принципиальная схема управления калорифером (рисунок 1).

Принцип работы калорифера при автоматическом режиме.

Переключатель S_4 переведен в положение «А».

При температуре ниже номинального разомкнуты контакты S_2 и S_3 датчиков температуры.

На базе транзистора T_1 находятся положительный потенциал и транзистор находится в закрытом состоянии, оп нему протекает очень маленькой величины ток. Поэтому на базе транзистора T_2 тоже находится положительный потенциал. Транзистор T_2 находится тоже в закрытом состоянии. По транзистору протекает очень слабый ток, соответственно по катушке реле K_4 тоже протекает ток этой же величины, т.к. катушка реле включена в эмиттерную цепь транзистора. Этого тока недостаточно для срабатывания реле K_4 . Контакты K_4 в цепи промежуточного реле K_4

разомкнуты и промежуточное реле обесточено. Размыкающие контакты K_3 замыкаются и запитываются катушки магнитного пускателя K_1 и соленоидного вентиля K_2 . Включаются двигатель привода вентилятора и соленоид, открывания клапана горячей воды. Водяной калорифер начинает работать.

По мере повышение температуры в теплице, замыкаются контакты датчика температуры S_3 , настроенного на минимально допустимую температуру. Калорифер продолжает работать.

При дальнейшем повышении температуры замыкаются контакты датчика температуры S_2 , настроенного на максимально допустимую температуру.

На базу транзистора T_1 подается отрицательный потенциал. Транзистору T_1 открывается, сопротивление транзистора резко падает, по транзистору начинает течь ток большей величины. Как только по транзистору T_1 начинает течь ток, на базе транзистора T_2 появляются отрицательные потенциал и по этой причине транзистор T_2 открывается, т.е. сопротивление транзистора T_2 падает и по транзистору протекает ток ,значит, и по катушке реле K_4 тоже начинать течь ток, реле K_4 срабатывает. Контакт K_4 замыкается и запитывается катушка промежуточного реле K_3 ,реле K_3 срабатывает и размыкающийся контакт K_3 размыкается, обесточивая катушки магнитного пускателя K_1 и K_2 соленоидного вентиля K_2 .

По мере того, когда калорифер не работает, температура теплице начинает снижаться.

Контакты контактного термометра размыкаются, но на базе транзистора T_1 остаётся отрицательный потенциал, т.к. цепь не разомкнута. Контакт S_2 зашунтирован контактом реле K_4 . При дальнейшем понижении температуры размыкаются контакты S_3 контактного термометра. На базу транзистора T_1 подаётся положительный потенциал через гасящее сопротивление R. Транзистор T_1 закрывается, соответственно закрывается транзистор катушка реле K_4 обесточивается, реле возвращается в исходное состояние, т.е. контакт K_4 размыкается, катушка K_3 промежуточного реле обесточивается, контакт K_3

промежуточного реле замыкается, запитываются катушки магнитного пускателя K и соленоидного вентиля K_2 . Калорифер вновь работает.

Так осуществляется поддержание постоянной температуры воздуха в теплице в автоматическом режиме.

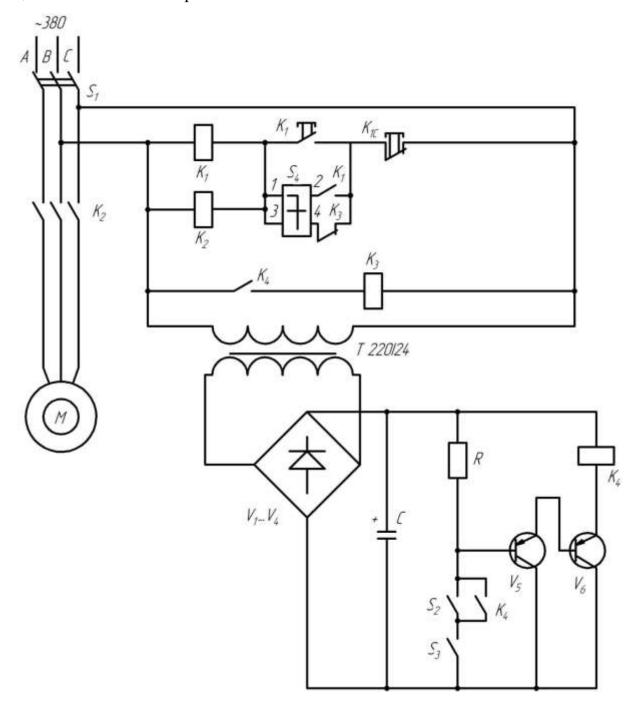


Рисунок 1 – Схема автоматического управления калорифером

Принцип работы калорифера при ручном режиме.

Переключатель S_4 переведен в положение «P».

При ручном режиме, когда нужно включить калорифер, нажимается кнопка K_1 . При этом запитываются катушка K_1 магнитного пускателя, магнитный пускатель и соленоидный вентиль срабатывают. Магнитный пускатель своими контактами K_1 шунтирует кнопку [5,6].

Для того, чтобы отключить калорифер, необходимо нажать кнопку K_{1c} , катушка магнитного пускателя обесточивается, катушка соленоидного вентиля тоже обесточится, катушка соленоидного вентиля тоже обесточится. Калорифер перестанет работать.

Предложенная схема, позволяет снизить затраты ручного труда, за счёт автоматизации процесса, при этом в денежном выражении капитальные вложения будут невелики.

Список литературы:

- 1. Инновационное развитие агропромышленного комплекса как фактор конкурентоспособности: проблемы, тенденции, перспективы: Коллективная монография / А.З. Анохина, Н.Ф. Баранов, В.Н. Батманов [и др.]. Киров: Вятская государственная сельскохозяйственная академия, 2020. 414 с.
- 2. Солонщиков П. Н., Микрюков Ю.Ф., Мошонкин А.М. Электробезопасность. Расчет основных параметров: Учебно-методическое пособие. Киров: Вятская государственная сельскохозяйственная академия, 2019. 32 с.
- 3. Мохнаткин В.Г., Солонщиков П.Н. Расчет оптимальных условий для содержания животных и птиц в помещениях: Учебное пособие. Киров: Вятская государственная сельскохозяйственная академия, 2017. 64 с.
- 4. Машины и оборудование в животноводстве: Лабораторный практикум / В.Г. Мохнаткин, П.Н. Солонщиков, А.А. Рылов, Р.М. Горбунов. Киров: Вятская государственная сельскохозяйственная академия, 2017. 88 с.

- 5. Солонщиков П.Н., Горбунов Р.М. Оптимизация технологий и машин в животноводстве: Учебное пособие. Киров: Вятская государственная сельскохозяйственная академия, 2017. 22 с.
- 6. Проблемы и перспективы цифровой трансформации сельского хозяйства / А. Н. Максимов, Н. Н. Пушкаренко, В. В. Белов, Н. Н. Белова // Цифровая трансформация сельского хозяйства: проблемы и перспективы: Материалы Всероссийской научно-практической конференции, Чебоксары, 28 февраля 2020 года. Чебоксары: Чувашская государственная сельскохозяйственная академия, 2020. С. 3-16.

UDC 697.921.452

DEVICE FOR AUTOMATIC REGULATION OF MICROCLIMATE IN LIVESTOCK PREMISES

Pavel N. Solonshickov

Candidate of Technical Sciences, Associate Professor solon-pavel@yandex.ru

Irina A. Tolstoukhova

master student

rautvill7828@mail.ru

Andrey N. Luchnikov

master student

andrey-luchnikov.10.11.1998@mail.ru

Vyatka State Agrotechnological University

Kirov, Russia

Abstract. The article presents a schematic diagram of the heater control. The principle of operation of the heater in automatic and manual mode is considered.

Key words: heater, circuit, mode, greenhouse.

Статья поступила в редакцию 29.03.2022; одобрена после рецензирования 11.04.2022; принята к публикации 12.05.2022. The article was submitted 29.03.2022; approved after reviewing 11.04.2022; accepted for publication 12.05.2022.