ОСВЕЩЕНИЕ, КАК ЧАСТЬ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ ТЕПЛИЦЫ

Дорохова Алена Максимовна

обучающаяся

dorohovata@mail.ru

Картечина Наталья Викторовна

кандидат сельскохозяйственных наук, доцент

kartechnatali@mail.ru

Мичуринский государственный аграрный университет

г. Мичуринск, Россия

Аннотация: свет в жизни растений играет определяющую роль для роста и развития. Ведь световая энергия определяет процесс фотосинтеза. Фотосинтез - поглощение света растением через листья. Для выращивания растений при искусственном освещении используются, в основном, электрические источники света. В данной статье рассмотрены различные виды ламп для теплиц.

Ключевые слова: освещение, фотосинтез, светодиодная лампа.

Одним из важнейших условий для роста и развития растений является свет. Только при хорошем освещении растения могут получить достаточно энергии для фотосинтеза. Потребность в освещении у разных культур различна, а зависит она от сорта, периода вегетации, фазы развития растений [1-3].

Рассмотрим подробнее лампы для теплиц. Сведем технические параметры ламп в таблице 1.

Вид лампы	ЛН	ДРЛ	Лю-	ДРИ	ДНАТ	ДНАТ	Светоди-	Индук-
энд лаший	лампа	Д1 J1	мини-	4111	низ-	высо-	одная	ционная
	нака-		сцент-		кого	кого	однил	ционнал
	лива-		ная		давле-	давле-		
	ния		114/1		ния	ния		
Светоотда-	10-20	30-60	45-80	80 -110	75 – 100	85 – 120	85 – 120	85 – 120
Период эксплуата- ции, час	1000 - 5000	6000	5000- 12000	8000 - 10000	10 000 - 15 000	10 000 - 30 000	25 000 – 80 000	60000- 120000
Возмож- ность плавной регули- ровки мощности	да	нет	нет	нет	нет	нет	да	да
Зажигание,	бы-	дли-	дли-	дли-	дли-	дли-		
перезажи-	строе	тель-	тель-	тель-	тель-	тель-	быстрое	быстрое
гание	cipoc	ное	ное	ное	ное	ное		
Пусковые токи	нет	да	да	да	да	да	нет	нет
Наличие ртути	нет	да	да	да	да	да	нет	нет
Снижение светового потока через 2000 часов, %	-	< 45	15-40	< 40	< 30	< 30	540	540
Темпера- тура лампы, °С	< 300	< 300	< 300	< 300	< 300	< 300	80110	<80
Мерцания	Есть	Есть	Есть	Есть	Есть	Есть	Воз-	Нет

Как можно видеть, одним из наиболее технологичных является светодиодное освещение (рисунок 1).

Рисунок 1 – Внешний вид светодиодной лампы

Особенности светодиодного светильника для освещения растений, теплиц, зимних садов [1, 4, 5]:

- низкое энергопотребление светильник потребляет к примеру 600Вт, что соответствует по эффективности до 1200 ДНАЗ, ДНАТ;
- экономия средств нулевые затраты на обслуживание;
- экономия на дополнительном оборудовании не требует дополнительного охлаждения и рефлектора;
- безвреден для Вас и окружающей среды не содержит ртути и других опасных веществ;
- универсальный может использоваться с любым методом выращивания гидропоника, аэропоника, почва;
- безопасный безвреден для ваших растений даже при полном контакте со светильником, нет опасности взрыва лампы при попадании воды или в конце срока службы (в отличает от натриевых ламп);
- срок службы до 100 000 часов [4, 5, 6].

Характеристики:

• Освещаемая площадь: до 120кв. метров.

Срок службы: до 100.000 часов.

Номинальное напряжение: 220-240V (380B) 50Hz.

• Потребляемая мощность: 560W.

• Источник света: LED мощностью 2W

• Цвет: Мультикрасный 720-615нм,

Мультисиний 450-390нм, Белый

• Рабочая температура: $-20^{\circ} \text{c} \sim +50^{\circ} \text{c}$

Угол освещения:
 90°

• Размер: 560х380х80 мм

• Bec: 14,5 кг

Высокая эффективность и энергосбережение, световая сила светодиодной лампы для растений позволяет сказать, что это лучшее освещение на сегодняшний день [9]. Для подтверждения этого мнения были сделаны графики сравнения (рисунок 2, 3).

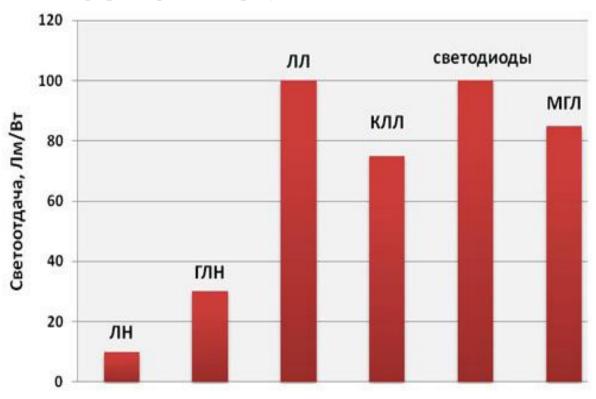


Рисунок 2 – Сравнение светоотдачи ламп

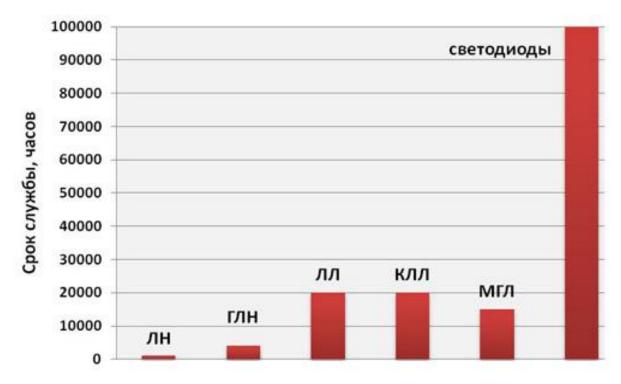


Рисунок 3 - Сравнение срок службы ламп различных типов

- ЛН лампа накаливания.
- МГЛ металлогалогенные лампы.
- КЛЛ компактные люминесцентные лампы (используются в быту).
- ЛЛ разрядные лампы низкого давления (люминесцентные лампы) [1, 7, 8].

Список литературы:

- 1. Белов А.В. Разработка устройств на микроконтроллерах AVR: шагаем от чайника до профи. СПб.: Наука и техника, 2013. 528 с.
- 2. Бондарева О.Б. Устройство теплиц и парников. М.: АСТ; Донецк: Сталкер, 2007. 92 с.: ил.
- 3. Борисов А.М., Нестеров А.С., Логинова Н.А. Программируемые устройства автоматизации. Учебное пособие. Челябинск: Издательский центр ЮУрГУ, 2010. 186 с.

- 4. Экспериментальные исследования определения освещенности и коэффициентов пульсации при использовании люминесцентных ламп и ламп накаливания / С.Ю. Щербаков, В.Б. Куденко, А.В. Аксеновский, И.П. Криволапов, В.С. Тимофеева // В сборнике: СБОРНИК НАУЧНЫХ ТРУДОВ, ПОСВЯЩЕННЫЙ 85-ЛЕТИЮ МИЧУРИНСКОГО ГОСУДАРСТВЕННОГО АГРАРНОГО УНИВЕРСИТЕТА в 4 т.. Мичуринск, 2016. С. 106-110
- 5. Копцев П.Ю. Влияние информационных технологий на рост синергетического эффекта в АПК // П.Ю. Копцев, Н.В. Картечина, Ю.А. Скрипко // В сборнике: Инженерное обеспечение инновационных технологий в АПК. Сборник материалов Международной научно-практической конференции. Под общей редакцией В.А. Солопова. 2018. С. 187-190.
- 6. Абалуев Р.Н. Информационное обеспечение сельского хозяйства / Р.Н. Абалуев, Д.В. Косенков // Наука и Образование. 2019. Т. 2. № 2. С. 290.
- 7. Аникьева Э.Н. Пути повышения производительности в агропромышленном комплексе при использовании облачных технологий / Э.Н. Аникьева, Е.А. Аникьева // Наука и Образование. 2019. Т. 2. № 4. С. 211.
- 8. Оценка устойчивости плодовых растений к дестабилизирующим воздействиям на основе анализа спектров отражения листьев / А.Н. Юшков, Н.В. Борзых, А.И. Бутенко // Журнал прикладной спектроскопии. 2016. Т. 83. № 2. С. 323-328..
- 9. Бутенко А.И. Структура нейронных сетей / И.В. Хатунцев, А.И. Бутенко // Наука и Образование. 2019. Т. 2. № 2. С. 384.

LIGHTING AS A PART OF THE AUTOMATED CONTROL SYSTEM OF TECHNOLOGICAL PROCESSES OF THE GREENHOUSE

Alena Maksimovna Dorokhova

studying

dorohovata@mail.ru

Natalya Viktorovna Kartechina

candidate of agricultural Sciences, associate Professor

kartechnatali@mail.ru

Michurinsk State Agrarian University

Michurinsk, Russia.

Annotation. Light plays a decisive role in plant life for growth and development. After all, light energy determines the process of photosynthesis. Photosynthesis is the absorption of light by a plant through its leaves. For growing plants under artificial light, mainly electric light sources are used. This article discusses the different types of greenhouse lamps.

Key words: lighting, photosynthesis, LED lamp.