ЭЛЕМЕНТЫ ТЕХНОЛОГИЙ ТОЧНОГО ЗЕМЛЕДЕЛИЯ

Коротков Артемий Александрович

студент

Астапов Андрей Юрьевич,

кандидат технических наук, доцент

astapow_a@mail.ru

Криволапов Иван Павлович

кандидат технических наук, доцент

ivan0068@bk.ru

Мичуринский государственный аграрный университет,

г. Мичуринск, Россия

Аннотация: В статье рассматриваются основные элементы системы точного земледелия, такие как глобальные системы позиционирования, географические информационные системы, оценка урожайности, дистанционное зондирование земли.

Ключевые слова: Точное земледелие, географические информационные системы дистанционного зондирования земли.

В последние годы в сельском хозяйстве появился новый термин «точное земледелие» или «точное фермерство» («Precision Farming»). Название «точное сельское хозяйство» пришло к нам также из иностранной терминологии – от английского слова «precision agriculture».

Главная цель точного земледелия при производстве сельскохозяйственных культур — максимизация урожая, финансовых выгод и минимизация вложений капитала, воздействия на окружающую среду.

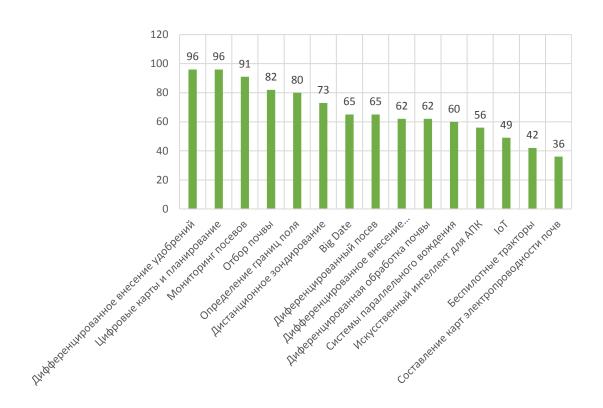
Точное земледелие, представляет собой высокотехнологичную систему сельскохозяйственного менеджмента, включающую в себя технологии глобального позиционирования (GPS), географические информационные системы (GIS), технологии оценки урожайности (Yield Monitor Technologies), переменного нормирования (Variable Rate Technology), дистанционного зондирования земли (ДЗЗ) и направленную на получение максимального объема качественной и наиболее дешевой сельскохозяйственной продукции с учетом норм экологической безопасности [1, 2, 5].

В зависимости от временного соотношения между сбором информации и применением соответствующих агротехнических мероприятий различают:

- двухэтапные подходы (off-line) или подходы на основе картирования;
- одноэтапные подходы (on-line) или подходы с принятием решений
 в реальном масштабе времени («real-time») или сенсорные подходы;
- различные комбинации одно- и двухэтапных подходов или сенсорный подход с поддержкой картированием (map overlay) [1-3].

Применение точного земледелия требует учета дополнительных затрат, среди которых можно выделить категории:

- затраты на сбор данных (карты, глобальные системы позиционирования (ГСП), сенсоры);
- затраты на менеджмент данных (техника и программное обеспечение);


 затраты на специальную технику для точного выполнения агроприемов и навигацию (ГСП-управляемые машины и оборудование для дифференцированной обработки почвы, посева, внесения удобрений, средств защиты растений и др.).

Большинство современных подходов к экономическому анализу точного земледелия сводится к оценке применения техники точного земледелия и соответствующих технологий при выращивании отдельной сельскохозяйственной культуры [1, 6]. Вместе с тем очевидно, что общий агроэкономический эффект от интеграции технологий точного земледелия в масштабах хозяйства с учетом синергетических эффектов будет более высоким по сравнению с использованием отдельных технологических приемов.

Основой научной концепции точного земледелия являются представления о существовании неоднородностей в пределах одного поля. Для оценки и детектирования этих неоднородностей используют новейшие технологии, такие как системы глобального позиционирования (GPS, ГЛОНАСС), специальные датчики, аэрофотоснимки и снимки со спутников, а также специальные программы, разработанные для агроменеджмента. Полученные данные применяют для планирования посева, расчета норм внесения удобрений и средств защиты растений, более точного предсказания урожайности и финансового планирования [2, 7, 8].

Применение технологий точного земледелия и формирование карт агроценозов позволяет оптимизировать затраты на внесение удобрений, обработку почвы, применение средств защиты растений.

Использование данных и программного обеспечения для составления карт урожайности является наиболее распространенной практикой (80%), за которой следует разработка планов или предписаний для применения VR-технологии для внесения питательных веществ и удобрений, а также для посева и посадки (50-60%) [2, 6, 9], рисунок 1.1.

Pисунок 1 - Рейтинг востребованности элементов точного земледелия и интернета вещей, баллы (от 0 до 100) [2]

Одной из технологий точного земледелия является применение оборудования для создания электронных карт полей путем наземных измерений или с помощью беспилотных летательных аппаратов, аэро- или космической съемки.

При составлении карт качества почв отдельных полей можно ввести дифференциальное внесение средств защиты растений и удобрений в различных частях поля, что позволяет значительно сэкономить на внесении удобрений и СЗР и не перенасыщать ими почву. Карта дает возможность вести паспорта полей и севооборот хозяйства, подсчитать нужное количество семенного материала, осуществлять мониторинг техники и определять не только расход топлива, но и эффективность использования рабочего времени, позволяет вести базу данных неограниченное время и по нескольким показателям и др.

Точное земледелие призвано оптимизировать операционные расходы и повысить урожайность (в среднем на 15–20%) путем сокращения объемов используемых семян, агрохимикатов, удобрений и воды; более эффективного

использования земли: с учетом особенностей того или иного участка определяются агрокультура с наибольшей урожайностью, а также оптимальная методика выращивания и ухода для максимизации урожайности [4, 8, 9].

Ключевыми элементами системы точного земледелия являются: беспилотные летательные аппараты (БПЛА), дистанционное зондирование земли (ДЗЗ), использование датчиков GPS и ГЛОНАСС.

Использование БПЛА имеет огромный потенциал для сельскохозяйственного производства, позволяет не только проводить оценку урожайности и выявлять потенциальные проблемные участки поля, но и обеспечивать эффективное внесение удобрений, обработку растений гербицидами и защитными препаратами, оценивать состояние почвенного покрова.

Для контроля свойств почвы, наблюдением состояния растительного покрова на больших площадях, использование дистанционного зондирования применяется с середины прошлого века. С помощью анализа данных изображений аэрокосмической сьемки проведены исследования по определению органического состава почв, содержания гумуса, определение влажности, температуры, засоления, и оценка деградации почв. Анализ помогает созданию рекомендации проведения мероприятий по улучшению показателей эффективности производства [5].

Список литературы

- 1. Комплекс машин для маточников вегетативно размножаемых подвоев и интенсивного сада / А.И. Завражнов, К.А. Манаенков, В.Ю. Ланцев, В.В. Хатунцев и др. //Достижения науки и техники АПК. 2009. № 1. С. 49-52.
- 2. Астапов А.Ю. Перспективы использования беспилотных летательных аппаратов в садоводстве / А.Ю. Астапов, К.А. Пришутов, С.С. Астапова // В сборнике: Инженерное обеспечение инновационных технологий в

- АПК Сборник материалов Международной научно-практической конференции. Под общей редакцией В.А. Солопова. 2018. С. 159-162.
- 3. Трубилин Е.И. Сельскохозяйственные машины : учеб. пособие / Е.И. Трубилин, Е.В. Труфляк. Краснодар : КубГАУ, 2008 225 с.
- 4. Технология и комбинированное средство для ухода за посевами сахарной свеклы / А.И. Завражнов, К.А. Манаенков, С.В. Соловьёв, А.Н. Омаров, А.В. Балашов // Наука в центральной России. 2016. № 2 (20). С. 5-11.
- 5. Никитин В.И. Фотограмметрическая обработка изображений с беспилотных летательных аппаратов / В.И. Никитин, А.Ю. Астапов // В сборнике: Энергосбережение и эффективность в технических системах Материалы V Международной научно-технической конференции студентов, молодых учёных и специалистов. 2018. С. 170-172.
- 6. Новая технология возделывания и уборки сахарной свеклы в условиях северо-востока Центрального Черноземья / В.И. Горшенин, С.В. Соловьёв, А.Г. Абросимов, О.А. Ашуркова // Вестник Мичуринского государственного аграрного университета. 2016. № 3. С. 165-171.
- 7. Пришутов К.А. Применение БПЛА для оценки качества растительности / К.А. Пришутов, А.Ю. Астапов, Ю.А. Рязанова // В сборнике: Инженерное обеспечение инновационных технологий в АПК Сборник материалов Международной научно-практической конференции. Под общей редакцией В.А. Солопова. 2018. С. 212-217.
- 8. Unmanned aerial vehicles for estimation of vegetation quality / A.Yu. Astapov, K.A. Prishutov, I.P. Krivolapov, S.Yu. Astapov, A.A. Korotkov // Amazonia Investiga. 2019. T. 8. № 23. C. 27-36.
- 9. Коротков А.А. Автоматизированные системы контроля в сельском хозяйстве в контексте реализации концепта IOTAGRO / А.А. Коротков, И.П. Криволапов // Наука и Образование. 2019. Т. 2. № 2. С. 25.

ELEMENTS OF PRECISION FARMING TECHNOLOGIES

Korotkov Artemiy Aleksandrovich

student

Andrey Yurievich Astapov

candidate of technical sciences, associate professor

astapow_a@mail.ru

Ivan Pavlovich Krivolapov

ivan0068@bk.ru

candidate of technical sciences, associate professor

Michurinsk State Agrarian University,

Michurinsk, Russia

Annotation. The article examines the main elements of the precision farming system, such as global positioning systems, geographic information systems, yield assessment, remote sensing of the earth.

Key words: Precision farming, geographic information systems for remote sensing of the earth.