УДК 621.822.6.004.67: 668.3: 631.3.02

ИССЛЕДОВАНИЕ ДЕФОРМАЦИОННО-ПРОЧНОСТНЫХ СВОЙСТВ КЛЕЕВЫХ СОЕДИНЕНИЙ И ОПТИМИЗАЦИЯ СОСТАВА КОМПОЗИЦИИ АН-112

Псарев Дмитрий Николаевич

кандидат технических наук, доцент

Зайцев Вячеслав Викторович

студент

Сергеев Александр Борисович

студент

Тонких Татьяна Динаровна

студент

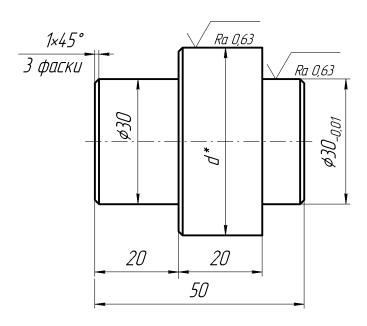
Скородумов Павел Сергеевич

студент

Ложков Сергей Николаевич

студент

e-mail: psarev_380@mail.ru


Мичуринский государственный аграрный университет г. Мичуринск, Россия

Аннотация: В статье приведены результаты исследования деформационно-прочностных свойств клеевых соединений и оптимизация состава композиции АН-112.

Ключевые слова: восстановление, корпусная деталь, подшипник, полимер, покрытие.

В качестве образцов исследовали клеевые соединения композиции АН-112 внутренних колец подшипников 207 с валами. Валы изготовили из стали 45 (рисунок 1). Шероховатость посадочной поверхности R_a 0,63 [1]. После

шлифования валы подвергли закалке по режиму: температура нагрева $T_{\text{нагр}} = 800$ °C, время нагрева $t_{\text{нагр}} = 0.5$ ч, охлаждающая среда - масло веретенное при T = 30 °C [2].

d* - диаметр склеиваемой поверхности

Рисунок 1 – Валы-образцы для клеевых соединений композиции АН-112 с подшипником 207:

Диаметральный зазор в соединении до склеивания обеспечивали шлифованием валов. Для обеспечения соосности деталей клеевого соединения использовали специальные центрирующие приспособления (рисунок 2), изготовленное из Ст. 3. Приспособление предназначено для центрирования подшипников 207 и 209 с валами при склеивании.

Отверждение соединения с толщиной клеевого шва h=0,1 мм проводили в течение 24 ч при температуре 20 °C (через 0,5 ч центрирующее приспособление разбирали, так как к этому времени клеевое соединение достигает транспортировочной прочности).

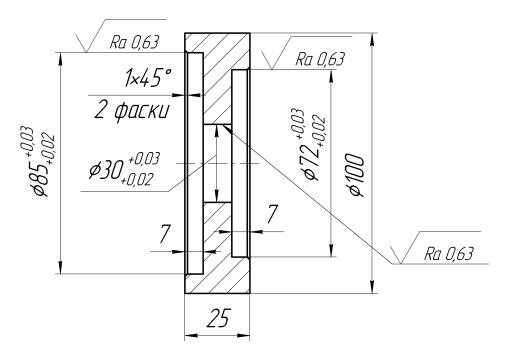


Рисунок 2 – Центрирующее приспособление для сборки деталей клеевого соединения композиции АН-

Испытания образцов проводили на разрывной машине ИР 5047-50 (рисунок 3) с одновременной записью диаграммы "нагрузка-деформация". Масштаб нагрузки М:1мм=1,6H, масштаб деформации М1:1. Скорость нагружения при испытаниях была постоянной и составляла 50 мм/мин.

Рисунок 3 – Разрывная машина ИР 5047-50

112

Работу деформации при разрушении клеевых соединении А определили, как площадь, ограниченную кривой "нагрузка-деформация" и осью абсцисс на

диаграмме. Удельная работа деформации при разрушении клеевых соединении a_c была рассчитана как частное от значения работы деформации A на объем клеевого шва.

Предварительные однофакторные эксперименты показали нелинейный характер зависимости удельной работы деформации при разрушении клеевых соединении от концентрации наполнителей.

Деформационно-прочностные свойства пленок оценивали прочностью при одноосном растяжении пленок σ_p и относительным удлинением ε_p .

На рисунке 4 показаны прочность при разрыве пленок анаэробных герметиков [2-3], анаэробного герметика АН-112 и композиции на его основе.

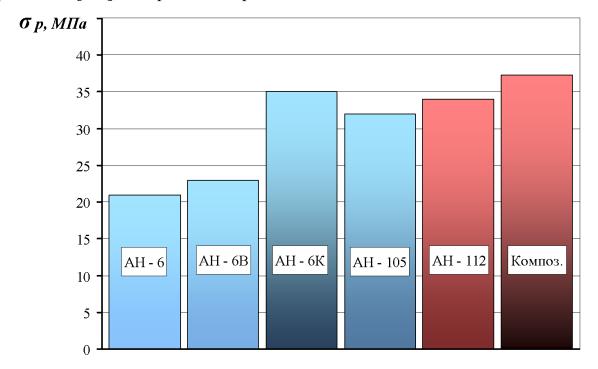


Рисунок 4 – Прочность при разрыве пленок анаэробных герметиков [2], анаэробного герметика АН-112 и композиции на его основе

Наименьшую прочность среди не наполненных герметиков имеют пленки анаэробного герметика АН-6 – 21,0 МПа, а наибольшую – пленки АН-6К – 35,0 МПА. Анаэробный герметик АН-112 занимает среди них второе место $\sigma_p = 33$ МПа. Введение дисперсных металлических наполнителей увеличивает его прочность на 12,1%. Прочность пленок композиции на основе герметика АН-112 наибольшая среди рассматриваемых анаэробных герметиков и составляет 37 МПа.

На рисунке 5 представлены деформационные свойства пленок анаэробных герметиков [2], анаэробного герметика АН-112 и композиции на его основе.

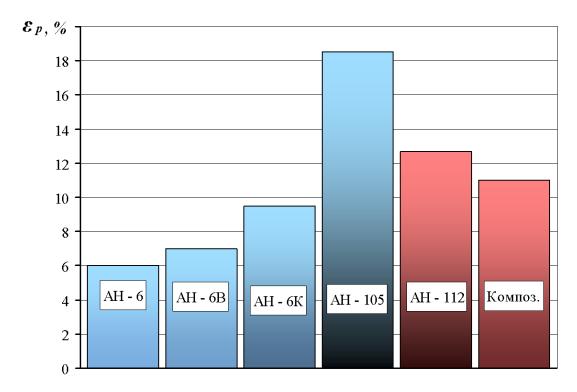


Рисунок 5 — Деформационные свойства пленок анаэробных герметиков [2], анаэробного герметика АН-112 и композиции на его основе

Минимальное удлинение при растяжении 6 % имеют пленки анаэробного герметика АН-6, несколько большее значение показали пленки анаэробных герметиков АН-6В и АН-6К – 7 и 9,5 % соответственно. Пленки адгезива АН-105 имеют наибольшее удлинение – 18,5 %. По деформации пленки анаэробного герметика АН-112 занимают второе место – 12,8%. Введение дисперсных металлических наполнителей уменьшает деформацию пленок на 1,8%, то есть до 11%, что вполне закономерно.

Исходя из результатов исследования, следует, что благодаря введению дисперсных металлических наполнителей композиция на основе анаэробного герметика АН-112 имеет более высокие деформационно-прочностные свойства, чем исследованные ранее и рекомендуемые для восстановления деталей анаэробные герметики АН-6, АН-6В, АН-6К и АН-105. Высокие деформационно-прочностные свойства в свою очередь являются предпосылками

обеспечения высокой долговечности полимерного материала при динамическом нагружении.

Список литературы

- 1. Спицын, Н. А. Подшипники качения [Текст]: Справочное пособие / Спицын Н. А., Сприщевский А. И.; М.: Машгиз, 1961, 828 с.
- 2. Щетинин, М. В. Восстановление неподвижных соединений подшипников качения сельскохозяйственной техники адгезивом Анатерм-105 [Текст]: дис. ... канд. техн. наук / Щетинин М. В. Мичуринск, 2008. 146 с.
- 3. Бочаров, А. В. Исследование перспективных полимерных материалов и технология восстановления неподвижных соединений подшипников [Текст] / Ли Р. И., Кондрашин С. И., Щетинин М. В., Бочаров А. В. // Вестник Российского государственного аграрного заочного университета. − 2007. − № 2(7). − 97-98.
- 4. Современные проблемы науки и производства в агроинженерии (учебник) / Л.В. Бобрович, А.С. Гордеев, В.И. Горшенин, С.А. Жидков, А.И. Завражнов, А.А. Завражнов, Р.И. Ли, Н.Е. Макова, К.А. Манаенков, В.В. Миронов, Н.В. Михеев, И.Г. Смирнов, В.Ф. Федоренко // Международный журнал прикладных и фундаментальных исследований. 2013. № 11-1. С. 100-101.
- 5. Technologies and means of mechanization for sowing sugar beet belt under the Central chernozem Russia / V. Gorshenin, S. Soloviev, A. Abrosimov, I. Drobyshev, O. Ashurkova. 2015. T. VII. C. 804.
- 6. Усовершенствованная технология возделывания и уборки сахарной свеклы в условиях тамбовской области / П.Н. Кузнецов, В.И. Горшенин, С.В. Соловьёв, А.Г. Абросимов // Вестник Мичуринского государственного аграрного университета. 2014. № 6. С. 53-56.
- 7. Транспортное обеспечение коммерческой деятельности / В.И. Горшенин, Н.В. Михеев, И.А. Дробышев // Учебное пособие: учебное пособие для студентов высших учебных заведений, обучающихся по специальности 315100 (080401) «Товароведение и экспертиза товаров». М-во сельского хоз-ва

- РФ, Федеральное гос. образовательное учреждение высш. проф. образования «Мичуринский гос. аграрный ун-т». Мичуринск, Тамбовская обл., 2009. –
- 8. Горшенин В.И. Основные направления повышения эффективности системы обеспечения региона продовольствием / В.И. Горшенин // Нива Поволжья. 2012. № 3 (24). С. 64-68.
- 9. Машина для обработки межствольных полос в саду / А.Н. Манаенков, В.И. Горшенин, С.Д. Алехин, А.Д. Засыпкин, К.А. Манаенков // Патент на изобретение RUS 2081531 01.03.1993
- 10. Курочкин А.А. Оборудование и автоматизация перерабатывающих производств / А.А. Курочкин, Г.В. Шабурова, А.С. Гордеев, А.И. Завражнов // Учебник для ВУЗов. Сер. Учебники и учебные пособия для студентов вузов. Москва, 2007.
- 11. Остриков В.В., Корнев А.Ю., Манаенков К.А. Использование масел в двигателях зарубежной техники // Сельский механизатор. 2012. № 5. С. 32-33.
- 12. Гордеев А.С. Основы проектирования и строительства перерабатывающих предприятий / А.С. Гордеев, А.А. Курочкин, В.Д. Хмыров, Г.В. Шабурова // Учебник. Сер. Учебники и учебные пособия для высших учебных заведений. Москва, 2002.

INVESTIGATION OF DEFORMATION AND STRENGTH PROPERTIES OF ADHESIVE COMPOUNDS AND OPTIMIZATION OF THE COMPOSITION OF AN-112

Psarev Dmitry Nikolaevich

candidate of technical sciences, associate Professor

Zaitsev Vyacheslav Viktorovich

student

Sergeyev Alexander Borisovich

student

Tonkih Tatiana Dinarovna

student

Skorodumov Pavel Sergeevich

student

Lozhkov Sergey Nikolaevich

Student

Michurinsk State Agrarian University, Michurinsk, Russia

Abstract: the article presents the results of the study of deformation and strength properties of adhesive compounds and optimization of the composition of AN-112.

Keywords: restoration, body part, bearing, polymer, coating.